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ABSTRACT Tuberculosis (TB) originating from expatriates that hail from high TB-burden 
countries is hypothesized to play a role in continued TB transmission in Oman. Here, 
we used whole-genome sequencing (WGS) to assess national TB transmission dynamics. 
The annual incidence per 100,000 population per year was calculated for nationals and 
expatriates. A convenience sample of Mycobacterium tuberculosis (MTB) isolates from 
2018 to 2019 was sequenced and analyzed with publicly available TB sequences from 
Bangladesh, Tanzania, the Philippines, India, and Pakistan. Relatedness was assessed by 
generating core-genome single nucleotide polymorphism (SNP) distances. The incidence 
of TB was five cases per 100,000 persons in 2018 and seven cases per 100,000 persons 
in 2020 (R2 = 0.34, P = 0.60). Incidence among nationals was 3.9 per 100,000 persons in 
2018 and 3.5 per 100,000 persons in 2020 (R2 = 0.20, P = 0.70), and incidence among 
expatriates was 7.2 per 100,000 persons in 2018 and 12.7 per 100,000 persons in 2020 (R2 

= 0.74, P = 0.34). Sixty-eight local MTB isolates were sequenced and analyzed with 393 
global isolates. Isolates belonged to nine distinct spoligotypes. Two isolates, originating 
from an expatriate and an Omani national, were grouped into a WGS-based cluster (SNP 
distance < 12), which was corroborated by an epidemiological investigation. Relatedness 
of local and global isolates (SNP distance < 100) was also seen. The relatedness between 
MTB strains in Oman and those in expatriate countries of origin can aid inform TB control 
policy. Our results provide evidence that WGS can complement epidemiological analysis 
to achieve the End TB strategy goal in Oman.

IMPORTANCE Tuberculosis (TB) incidence in Oman remains above national program 
control targets. TB transmission originating from expatriates from high TB-burden 
countries has been hypothesized to play a role. We used whole-genome sequencing 
(WGS) to assess TB transmission dynamics between expatriates and Omani nationals to 
inform TB control efforts. Available Mycobacterium tuberculosis isolates from 2018 to 2019 
underwent WGS and analysis with publicly available TB sequences from Bangladesh, the 
Philippines, India, and Pakistan to assess for genetic relatedness. Our analysis revealed 
evidence of previously unrecognized transmission between an expatriate and an Omani 
national, which was corroborated by epidemiological investigation. Analysis of local 
and global isolates revealed evidence of distant relatedness between local and global 
isolates. Our results provide evidence that WGS can complement classic public health 
surveillance to inform targeted interventions to achieve the End TB strategy goal in 
Oman.

KEYWORDS Mycobacterium tuberculosis, molecular phylogeography, phylogeny, Oman

O man is a low-incidence tuberculosis (TB) country, where successful control 
measures have led to a substantial reduction in the disease burden. Nonetheless, 
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since 2015, TB rates have lingered between 5.9 and 8.9 per 100,000 population (1), 
persisting above the national program control target of <1 per 100,000 population 
by 2035 (2). Around 400 cases are reported every year, with a larger proportion seen 
among expatriates (3), who represent over 40% of the population. The majority of 
expatriates in Oman originate from high TB-burden countries with a TB incidence greater 
than 100 cases per 100,000 population (4).

The TB epidemiology in Oman parallels the pattern seen in other Gulf Cooperation 
Council (GCC) countries (5–7). This has partly been attributed to the similar demographic 
structure and the large proportion of expatriates from high TB-burden countries (8). 
Expatriates constitute a vast proportion of GCC countries’ population reaching up to 
37%, 46%, 53%, 86%, and >89% in Saudi Arabia, Oman, Bahrain, Qatar, and UAE, 
respectively (9). In 1997, the Gulf Health Council endorsed the goal of TB elimination, 
aiming at reducing the incidence of new cases among nationals to <1 per 100,000 by 
2010. However, no country in the region has achieved the desired targets (1).

Molecular analysis of Mycobacterium tuberculosis (MTB) within the GCC has shown a 
high degree of relatedness of M. tuberculosis among nationals and expatriates. Stud
ies in Saudi Arabia, Oman, and Kuwait revealed a high proportion of multinational 
genotype-matched clusters of M. tuberculosis lineages suggesting marked transmission 
permeability (6, 10, 11). Within Oman, a previous analysis of 1,295 MTB isolates revealed 
significant spoligoprofile clustering of isolates obtained from nationals and expatriates. 
Such clustering of isolates is suggestive of transmission events (11).

Whole-genome sequencing (WGS) can allow for higher resolution and more accurate 
calling of transmission events compared to standard genotyping (such as Mycobacterial 
Interspersed Repetitive Units Variable Number Tandem Repeats [MIRU-VNTR] typing), 
which has previously been shown to overestimate the rate of transmission (12). Here, we 
aimed to extend prior findings (11) and use WGS to assess for undetected transmission 
events to aid in TB control efforts.

MATERIALS AND METHODS

TB epidemiology in Oman

TB is a notifiable disease in Oman and all cases across the country are reported to the 
National TB program at the Directorate General for Disease Surveillance and Control 
Program at the Ministry of Health. All positive samples from the healthcare institutions 
are submitted to the National Reference TB laboratories at the Central Public Health 
Laboratories for the confirmation of identification by acid fast bacilli smear microscopy, 
mycobacterial culture and GeneXpert (Xpert MTB/RIF) assay, and drug susceptibility 
testing. TB cases per year and population estimates were obtained from the annual 
report of the Ministry of Health (3).

Mycobacterium tuberculosis phenotypic and genomic characterization

A convenience sample of available MTB isolates from 2018 and 2019 were obtained from 
the National Tuberculosis Reference Laboratory at the Central Public Health Laboratories 
of the Ministry of Health in Oman and underwent phenotypic and genotypic characteri
zation.

The laboratory performs confirmation of TB diagnosis using standard microbiological 
procedures for the identification of the M. tuberculosis complex and in vitro drug-sus
ceptibility test for all first-line anti-TB drugs (13). Isolates resistant to a single drug 
were classified as mono-resistant. Isolates resistant to more than one drug but not to 
both isoniazid (INH) and rifampin (RIF) were classified as poly-resistant (PolyR). Isolates 
resistant to at least INH plus RIF were classified as multi-drug resistant (MDR).
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Whole-genome sequencing

Library preparation, sequencing, and analysis were performed by Novogene (UK) 
Company Limited. Library preparation was performed using the NEBNext DNA Library 
Prep Kit (New England BioLabs, USA). Index codes were added to each sample. The 
genomic DNA is randomly fragmented to a size of 350 bp. DNA fragments were end 
polished, A-tailed, ligated with adapters, size selected, and further PCR enriched. Then, 
PCR products were purified (AMPure XP system), followed by size distribution determi
nation by Agilent 2100 Bioanalyzer (Agilent Technologies, CA, USA), and quantification 
using real-time PCR. The library was then sequenced on a NovaSeq 6000 S4 flow cell with 
PE150 strategy.

Bioinformatics and phylogenetic analysis

Sequencing data were processed using the Bactopia pipeline (v1.2.2) (14). Briefly, 
input FASTQs underwent processing and removal of Illumina-related adapters and phiX 
contaminants using BBTools (15). Contigs were then assembled by the Shovill pipeline 
(v1.0.7) (16) using strategic k-mer extension for scrupulous assemblies (v2.3.0) (17). The 
assembly was then assessed for its biological (e.g., containment and contamination) as 
well as its technical (e.g., misassembles and errors) quality using CheckM (18) and QUAST 
(19). A summary of the sequence statistics and assembly statistics was computed and 
the rank of Gold, Silver, Bronze, or Fail was assigned based on sequence and assembly 
quality (Table S1). Annotation was performed by Prokka (20), supplemented by clustered 
protein annotations from completed M. tuberculosis genomes available from RefSeq 
(21). Variants were predicted using Snippy (22) and BWA (23) by alignment of the QC'd 
FASTQs to the downloaded reference genome (GCF_000195955.2). Bedtools (24) was 
used to generate the per-base coverage of the reference alignment, and vcf-annotator 
was used to add annotations to the final VCF (25). SAMtools (26) was then used to 
convert the alignments from SAM to BAM files. The presence of antimicrobial resistance 
gene, which predicts resistance to anti-tuberculosis drugs, and determination of lineage 
were performed using TBProfiler (27).

To examine the relatedness of M. tuberculosis lineages in Oman with those in the 
expatriate’s countries of origin, we created a database of publicly available isolates from 
Bangladesh, Tanzania, the Philippines, India, and Pakistan. We downloaded the raw 
FASTQs from the Sequence Read Archive (SRA) (28) (n = 593, Table S2) and processed 
them as above. Publicly available TB sequences were compared with local isolates and 
filtered out of downstream pangenome analysis if average nucleotide identity (ANI) 
was less than 95% as determined by FastANI (29) (Table S3). Phylogenetic trees were 
constructed based on a core gene alignment identified by Roary (30). Using IQ-Tree 
(31), a maximum likelihood tree was generated by running 1,000 bootstrap replicates 
under the generalized time-reversible model of evolution. The tree was visualized and 
annotated using Interactive Tree Of Life (32). Potential transmission between patients 
was assessed by generating a core-genome SNP distance matrix for local isolates (n = 68) 
calculated using snp-dists (33). An SNP distance of <12 was considered as a WGS cluster 
and potential case of transmission (12, 34).

A network analysis was performed using a few representative global strains from each 
lineage (Table S6). Set parsimony splits were computed (35). All positions containing 
gaps and missing data were eliminated. SplitsTree4 (version 4.15.1) (36) was used to 
generate a neighbor-net genetic network based on the alignment of positions using the 
uncorrected p-distance and 1,000 replicates (36).

Statistical analysis

Descriptive analyses were performed to summarize specimen information, demograph
ics, microbiological, and genotyping results. Statistical analysis was performed using R 
version 4.0.2 (Vienna, Austria) and the RStudio interface version 1.3.1073 (Boston, MA, 
USA)
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RESULTS

TB in Oman, 2018–2020

The incidence of TB in Oman was 12 cases per 100,000 in 2011 and reached its lowest 
level of 5.9 per 100,000 population in 2021. Between 2018 and 2020, the time period that 
mirrors isolate availability, there were 927 reported cases of tuberculosis in Oman, 313 
(33%) among nationals and 614 (66%) among expatriates. The overall annual incidence 
of TB was five cases per 100,000 persons in 2018 and seven cases per 100,000 persons in 
2020 (R2 = 0.34, P = 0.60). The incidence of TB among nationals was 3.9 in 2018 and 3.5 
per 100,000 persons in 2020 (R2 = 0.20, P = 0.70). The incidence among expatriates was 
7.2 per 100,000 persons in 2018 and 12.7 per 100,000 in 2020 (R2 = 0.74, P = 0.34) (Fig. 1A 
and B).

Clinical characteristics of MTB patients with available isolates

A total of 69 MTB isolates from unique patients with active TB were obtained for WGS. 
The MTB isolates were obtained from 11 governorates in Oman, from Omani nationals (n 
= 17, 25%) and expatriates (n = 52, 75%), collected between 2018 (n = 36, 52%) and 2019 
(n = 33, 48%).

The patients were aged between 16 and 88 years. The median (interquartile range, 
IQR) age of nationals and expatriate patients was 33 (16) and 37 (37) years, respectively. 
The majority of the patients were male (n = 49, 72.0%) with a higher percentage of males 
among both groups (expatriates: 72.5%, Omani nationals: 82.3%). The majority of the 

FIG 1 TB incidence per 100,000 population (A) and cases (B) in Oman between 2018 and 2020 for total population (green), nationals (purple), and expatriates 

(orange).
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patients had pulmonary TB (n = 59, 87%). Key clinical and epidemiological features of 
patients included in the analysis (n = 69) with available clinical/epidemiological data (n = 
68) are summarized in Table 1.

Antimicrobial susceptibility profiles

The isolates had variable antimicrobial susceptibility profiles. Twenty-two isolates (32%) 
were pan-susceptible, 17 isolates (24%) were INH mono-resistant, one (1%) isolate was 
RIF mono-resistant, 11 isolates (16%) were poly-resistant, and three isolates (4%) were 
MDR (Table 1). Antimicrobial resistance genes and mutations associated with resistance 
that were detected are presented in Table 2.

Spoligotypes of M. tuberculosis

M. tuberculosis isolates from Oman comprised four lineages: Indo-Oceanic (n = 35, 51%), 
Euro-American (n = 19, 28%), East Asian Indian (n = 11, 16%), and East-Asian (n = 3, 
4%). These were further divided into nine sub-lineages (spoligotypes), the majority of M. 

TABLE 1 Clinical and microbiological characteristics of patients with sequenced TB isolates (n = 68)b

Variable Total population N = 68a 

(%)
Oman nationals N = 17 
(25)

Expatriates N = 51 
(75)

Median age (IQR) 35 (15) 33 (16) 37 (37)
Sex (male) 49 (72) 13 (76) 36 (71)
Year of collection
   2018 36 (53) 14 (82) 22 (43)
   2019 32 (47) 3 (18) 28 (55)
Infection site
   Pulmonary 59 (87) 12 (71) 47 (71)
   Extra-pulmonary 9 (13) 5 (29) 4 (8)
Nationality status
Expatriates
   India 16 (31) 0 (0) 16 (31)
   Bangladesh 14 (27) 0 (0) 14 (27)
   Pakistan 6 (12) 0 (0) 6 (12)
   Filipino 4 (8) 0 (0) 4 (8)
   Indonesia 1 (2) 0 (0) 1 (2)
   Brunei 1 (2) 0 (0) 1 (2)
   Yemen 1 (2) 0 (0) 1 (2)
   Egypt 1 (2) 0 (0) 1 (2)
   Sudan 1 (2) 0 (0) 1 (2)
   Uganda 1(2) 0 (0) 1 (2)
   Tanzania 1 (2) 0 (0) 1 (2)
Omanis 17 (25) 17 (100) 0 (0)
Spoligotype
Beijing 3 (4) 0 (0) 3 (6)
CAS 11 (16) 5 (29) 6 (12)
EAI 36 (52) 9 (53) 26 (49)
LAM;T;S;X;H 19 (28) 3 (18) 16 (31)
Drug susceptibility profile
   Sensitive 22 (32) 9 (53) 13 (25)
   INHR 28 (41) 2 (12) 15 (29)
   RIFR 4 (8) 0 (0) 1 (5.9)
   MDR 3 (4) 0 (0) 3 (6)
   PolyR 11 (16) 19 (20) 1 (6)
aClinical data not available for one associated isolate.
bIQR: interquartile range, INHR: Isoniazid mono-resistant, MDR: multi-drug resistant, PolyR: polydrug resistant, and 
RIFR: Rifampin mono-resistant.
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tuberculosis belong to three clades; East African Indian (EAI) (n = 35, 51%), Central Asia 
Strain (CAS) (n = 11, 16%), and Beijing (n = 3, 4%). Other less common lineages identified 
included T family, Latin American Mediterranean (LAM), Haarlem (H), X family, S family, 
and MANU (Fig. 2; Table 2).

Two of the major sub-lineages (CAS and EAI), as well as five sub-lineages (LAM, Manu, 
H, S, and X1), were shared between Omani nationals and expatriates (Fig. 2). The Beijing 
sub-lineage was exclusive to expatriates. At least seven (CAS, EAI, LAM, Manu, H, S, 
and X1) of the nine clades detected contained isolates from both Omani nationals and 
expatriates.

Relatedness of MTB isolates in Oman

Of the 69 isolates sequenced, one isolate was removed from downstream analysis due to 
poor assembly metrics, specifically too many contigs (n = 2,268) (Table S1).

TABLE 2 TB isolate genotypic characteristics

Characteristic N (%)

Lineage
  Lineage1 36 (52)
  Lineage2 3 (4)
  Lineage3 11 (16)
  Lineage4 19 (28)
Family
  East-African-Indian 11 (16)
  East-Asian 3 (4)
  Euro-American 19 (28)
  Indo-Oceanic 36 (52)
Spoligotype
  Beijing 3 (4)
  CAS 11 (16)
  EAI 36 (52)
  LAM;T;S;X;H 19 (28)
Rifampin resistance-associated mutations
  rpoB 4 (6)
Isoniazid resistance-associated mutations
  fabG1 c.-15C > T 13 (19%)
  inhA p.Ile21Thr (1.00), ahpC p.Glu76Lys 1 (1)
  katG 12 (17)
Ethambutol resistance-associated mutations
  embB 7 (10)
Pyrazinamide-resistance-associated mutations
  pncA 4 (6)
Streptomycin resistance-associated mutations
  gid c. 8 (11)
  rpsL 10 (14)
  rrs r. 2 (3)
Fluoroquinolone resistance-associated mutations
  gyrB p.Thr500Asn 1 (1)
Capreomycin resistance-associated mutations
  tlyA p.Leu118Pro 1 (1)
Ethionamide resistance-associated mutations
  fabG1 c.-15C > T 12 (17)
  inhA p.Ile21Thr 1 (1)
Para-aminosalicylic acid_mutations
  folC p.Ile43Ser 1 (1)
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The core-genome SNP-wise comparison of 66 out of the remaining 68 isolates 
demonstrated a difference of more than 100 SNPs with every other isolate, thus, 
reducing the high spoligo-based estimates of transmission by 100%. Phylogenetic 
analysis and SNP difference revealed an instance of possible transmission due to the 
low number of SNP count (<12) and clustering on the phylogenetic tree between two 
remaining isolates (Table S4; Fig. 3). The isolates were from a female Omani national 
(sample H8675_19) and a female expatriate (sample S4278), both from the Muscat region 
with a similar AST phenotype (INHR) and had one SNP difference. The epidemiologi
cal investigation revealed key data, including residence location and behaviors, which 
suggested a previously unknown transmission link between these two cases.

M. tuberculosis in Oman and other regional strains

We examined the relatedness between MTB isolates in Oman and those in the countries 
of origin of expatriates. A total of 593 available M. tuberculosis sequences from Bangla
desh, Tanzania, the Philippines, India, and Pakistan were downloaded from SRA and 
processed using the Bactopia pipeline. After filtering for low quality genomes and those 
that did not meet ANI cutoff >95% similarity with local TB isolates, we were left with 393 
isolates (Table S5).

Phylogenetic analysis revealed no evidence of direct transmission. Clustering on 
the phylogenetic tree and an SNP distance of <100 with global genomes were seen 
in a few of the expatriate’s cases. Isolate H5872_19 (expatriate from Sharqiyah region, 
Oman) clustered with many isolates from India and had an SNP distance of <100. 

FIG 2 Distribution of M. tuberculosis spoligotypes for the total population (green), nationals (purple), and expatriates (orange).
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Isolate S390_18 (expatriate from Dhofar region, Oman) had an SNP distance of <100 
with a genome from India (accession SRX2638073). Sample D3450_18 (expatriate) 
had an SNP distance of <100 SNPs with a genome from the Philippines (accession 

FIG 3 Phylogenetic tree of M. tuberculosis from Oman, 2018–2019 (n = 69). Phylogenetic trees were constructed based on 

a core genome alignment identified by Roary (30). Using IQ-Tree (31), a maximum likelihood tree was generated by running 

1,000 bootstrap replicates under the generalized time-reversible model of evolution. The tree was visualized and annotated 

using Interactive Tree of Life (32). The tree is annotated based on isolate source (white: reference, purple: Omani nationals, and 

orange: expatriates).
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SRX2635773) (Table 2; Fig. 4), suggesting remote relatedness between these cases, which 
was supported by network analysis (Fig. 5).

DISCUSSION

The low and persistent TB incidence profile of Oman has been attributed to the 
transmission of M. tuberculosis strains from the large proportion of expatriates from 
high TB-burden countries (37). Using WGS, the present study provides direct proof of a 
transmission event between an expatriate and an Omani national and revealed a degree 
of relatedness between MTB strains in Oman isolated from expatriates and those in 
expatriate’s home countries.

The majority of TB cases reported in Oman in 2019 and 2020 were seen among 
expatriates (1). In Oman, control of imported M. tuberculosis strains via expatriates is 
regulated by mandatory health checkups for initial visa approvals as well as renewal of 
residence visas (38, 39). However, latent TB (LTB) testing is not part of the current policy 
although it was seen as an important measure to reduce the high incidence of TB among 
expatriates (37). Testing for interferon-gamma release assay among 1,042 applicants for visa 
renewal in 2019, in Sohar governorate, showed a high prevalence of positive cases among 
expatriates from Asia (21%) and Africa (31%), indicative of LTB (38). Similarly, a survey of 
501,290 expatriates, for visa renewal in 2018–2020, in Muscat governorate, revealed an LTB 
rate of 10.6 per 100,000 applicants (4). This is consistent with the findings of 158 out of 97,100 
X-ray results of expatriates in Oman, with presumptive pulmonary TB, in 2018 (38). Thus, the 
diagnosed TB cases in Oman among the expatriate community are most probably a result of 
the reactivation of LTB acquired in their country of origin (4, 38).

FIG 4 Phylogenetic tree of M. tuberculosis from Oman and globally available isolates from India, Pakistan, and the Philippines (n = 462). Phylogenetic trees 

were constructed based on a core genome alignment identified by Roary (30). Using IQ-Tree (31), a maximum likelihood tree was generated by running 1,000 

bootstrap replicates under the generalized time-reversible model of evolution. The tree was visualized and annotated using Interactive Tree of Life (32). The tree 

is annotated based on country isolate source (blue: India, purple: the Philippines, green: Pakistan, and red: Oman).
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FIG 5 Neighbor-net genetic network of M. tuberculosis from Oman and down-sampled publicly global available isolates from 

India, Pakistan, Tanzania, and the Philippines. All positions containing gaps and missing data were eliminated. SplitsTree4 

(version 4.15.1) (36) was used to generate a neighbor-net genetic network based on the alignment of 111 positions using 

the uncorrected p-distance and 1,000 replicates. The analysis involved 69 nucleotide sequences. The colors of the isolated are 

given according to their assignment to main TB lineages. Blue for lineage 1, violet for lineage 2, orange for lineage 3, and 

green for lineage 4. Names in bold black letters represent the country of origin of down-sampled publicly global available 

isolates (Table S6).
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Many of the isolates were found to belong to M. tuberculosis lineages, including EAI 
(51.5%), CAS (16.1%), and Beijing (4.4%), which are common in the country of origin of 
expatriates in Oman, such as the Indian subcontinent, South East Asia, and East Africa 
(40). Whereas the other lineages, T, LAM, and H (27.9%) are prevalent in East Africa, which 
has a historical link with Oman (41). These findings are consistent with a recent analysis 
of 1,295 M. tuberculosis isolates in different provinces in Oman, where no differences 
were seen among MTB lineages infecting nationals and expatriates (13). Such a pattern 
has also been reported in other GCC countries, with a similar demographic structure of 
a high proportion of expatriates, such as Saudi Arabia and Kuwait (6, 42). This contrasts 
reports from Europe and US, where MTB lineage isolates from expatriate patients were 
rarely found among those of local patients (43, 44). Thus, the high similarity of MTB 
lineages infecting expatriates and nationals in GCC countries maybe indicative of closer 
social interactions between nationals and expatriates. This is evident by the close genetic 
relatedness between some of the MTB lineages in Oman and other countries, with 
differences of <100 SNPs (Table 3) and clustering together on network analysis.

It is, thus, intuitive to hypothesize that frequent TB transmission between nationals 
and expatriates is occurring, given the higher number of genotype-matched clusters 
with shared MTB lineages of the two groups [7 out of 9 (77.7%)] (Fig. 2). However, 
spoligotyping can overestimate recent transmission due to its low discriminatory power. 
A recent analysis of 192 M. tuberculosis isolates in 41 spoligo-clusters, by MIRU-VNTRs 
genotyping, revealed no evidence of identical genotypes (11). Using the more sensitive 
WGS, the present study detected a small cluster of transmission (2 out of 68), thus 
reducing the probability of estimate of transmission to 2.9%. Our results are likely 
biased by sampling methodology and the use of a convenience sample (vs the ability to 
sequence all available isolates) and may underestimate transmission. Our findings are in 
line with the recent data from Oman (45) but build on prior efforts by inclusion of global 
sequences and providing granular SNP distances to define transmission (45).

In conclusion, the use of a more discriminatory typing approach by WGS can 
complement epidemiological methods to investigate transmission dynamics and identify 
clusters of recent transmission, for targeted interventions. In addition, WGS can provide 
data distinguishing between the reactivation of LTB from the country of origin and a 
recently acquired infection locally (46). This is particularly relevant to the End TB strategy 

TABLE 3 M. tuberculosis in Oman and other global or regional isolates with an SNP distance of <100 SNPsa

Local M. tuberculosis isolates 
(Omani or expatriate)

Global/regional M. tuberculosis isolates 
(isolate source)

SNP distance

D3450 (expatriate) SRX2635773 (the Philippines) 75
S390 (expatriate) SRX2638073 (India) 92
H5872 (expatriate) SRX11666884 (India) 82

SRX11666892 (India) 82
SRX11666895 (India) 79
SRX11764878 (India) 85
SRX11764881 (India) 93
SRX11806095 (India) 66
SRX11806096 (India) 87
SRX11806098 (India) 94
SRX11806100 (India) 85
SRX11806101 (India) 79
SRX11806108 (India) 86
SRX11806109 (India) 91
SRX11806110 (India) 92
SRX11806114 (India) 83
SRX11806116 (India) 93

aSNP: single nucleotide polymorphism.
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in Oman, which aims at a 10% reduction per year, among nationals and expatriates, to 
achieve the target of <1 per 100,000 in 2035 (2).
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