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Abstract

Background. The use of shotgun metagenomics for AMR detection is appealing because data

can be generated from clinical samples with minimal processing. Detecting antimicrobial

resistance (AMR) in clinical genomic data is an important epidemiological task, yet a complex

bioinformatic process. Many software tools exist to detect AMR genes, but they have mostly

been tested in their detection of genotypic resistance in individual bacterial strains. Further, these

tools use different databases, or even different versions of the same databases. Understanding the

comparative performance of these bioinformatics tools for AMR gene detection in shotgun

metagenomic data is important because this data type is increasingly used in public health and

clinical settings.

Methods. We developed a software pipeline, hAMRoaster (Harmonized AMR Output

compAriSon Tool ER; https://github.com/ewissel/hAMRoaster), for assessing accuracy of

prediction of antibiotic resistance phenotypes. For evaluation purposes, we simulated a highly

resistant mock community and several low resistance metagenomic short read (Illumina) samples

based on sequenced strains with known phenotypes. We benchmarked nine open source

bioinformatics tools for detecting AMR genes that 1) were conda or Docker installable, 2) had

been actively maintained, 3) had an open source license, and 4) took FASTA or FASTQ files as

input. hAMRoaster calculated sensitivity, specificity, precision, and accuracy for each tool,

comparing detected AMR genes to susceptibility testing.

Conclusion. Overall, all tools were precise and accurate at all genome coverage levels tested

(5x, 50x, 100x sequenced bases / genome length) in the highly resistant mock community with

more variability in the low resistance community (1x coverage). This study demonstrated that

different bioinformatic tools and pipelines yield differences in AMR gene identification across
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drug classes, and that these differences become important if researchers are interested in

resistance to specific drug classes.

Significance. Software selection for metagenomic AMR prediction should be driven by the

context of the clinical/research questions and tolerance for true and false negative results. The

ability to assess which bioinformatics tool best fits a particular  dataset prior to beginning a

large-scale project allows for more efficient processing and analysis using optimal tools for a

particular research question. As prediction software and databases are in a state of constant

refinement, the approach used here—creating synthetic communities containing taxa and

phenotypes of interest along with using hAMRoaster to assess performance of candidate

software—offers a template to aid researchers in selecting the most appropriate strategy at the

time of analysis.

Keywords: antimicrobial resistance, bioinformatics, metagenomics

Tweet: Introducing a new pipeline for comparing results from #AMR tools from @emily_wissel

@tdread_emory and others!

hAMRoaster compares detected AMR genes to known resistance, and returns a table with

metrics for comparing results across tools.
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Introduction

Antibiotic resistant infections pose a serious threat not only to public health but to the

agricultural, veterinary, and food safety industries. The misuse of antibiotics in healthcare and

livestock production has led to widespread antimicrobial resistance in diverse environments and

has emerged as a threat to global health.1 2 The burden of multi-drug resistant pathogens is

increasing globally, creating complex clinical scenarios in which there are limited (if any)

therapeutic options, resulting in increased mortality and healthcare costs for common medical

procedures.3 Genes that confer antimicrobial resistance (AMR) are increasingly present in

commensal members of the human microbiome and are recognized as an important reservoir for

conferring pathogen resistance through horizontal gene transfer.4,5

Two key approaches to mitigating AMR infections are antibiotic stewardship and AMR

surveillance. While antibiotic stewardship focuses on using antibiotics appropriately, AMR

surveillance focuses on describing AMR genes already present in a community. Currently, AMR

surveillance typically relies on phenotypic characterization through culture or genotypic

characterization through molecular diagnostics based on PCR and hybridization techniques.6

However, there is a move toward genome-based methods 7 with the Illumina short-read platform

being the dominant platform for data generation at the present time.8

Sequencing technology has revolutionized research across many disciplines, with more

applications found every year as both the technologies and analysis methods advance. This is

particularly evident in the use of metagenomic data for the microbial surveillance of

antimicrobial resistance (AMR), as microbial communities can be characterized without the need

to first isolate and culture the specimen prior to analysis.9–11 As the cost and time of sequencing

has dramatically decreased, petabytes of data are quickly generated, with Illumina short reads
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becoming more prevalent.8,12,13 Detecting AMR genes potential through non-culture based, high

throughput DNA sequencing and bioinformatic approaches is of growing relevance and

importance.

There are many bioinformatic tools created to process large amounts of data while

following open-science principles.14 Open science is a term used to describe data that is Findable,

Accessible, Interoperable, and Reusable or (FAIR) and that are open-source.15 With so many

options available, it is important that investigators determine which open-source tool is the best

suited for their research question. One way to address issues with replicability and variance

across studies is to establish standardized bioinformatics pipelines and best practices, as has been

done, for example,by the National Microbiome Data Collaborative (NMDC).16 However, for

many researchers, a standardized bioinformatics pipeline may not the best suited for their data or

research question.14

As shotgun metagenomic sequencing is emerging as a powerful tool for detecting AMR,17

it is essential to evaluate how well different tools perform. In addition to testing AMR gene

prediction tools against widely available metagenome samples, they should be compared in

samples with extensive phenotypic resistance (acquired and mutational AMR genes). Here, we

describe a software pipeline, hAMRoaster, that provides metrics on tool performance in

detecting AMR genes from known resistant phenotypes and can therefore help in

decision-making about which tools will be adequate for detecting resistance to the drug classes

being studied.

Methods

For a schematic overview of the methods, see Figure One.
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Development of a software pipeline, hAMRoaster, to assess results of antibiotic resistance

prediction

hAMRoaster was written as a conda installable command line tool in a Python script and

requires three inputs: a) the text output of AMR tool on a FASTQ or FASTA test file, such as a

text file processed through hAMRonization,18 b) a list of known phenotypes associated with the

test file or samples names, and c) (optional) a tab formatted table which matches antibiotic drugs

with their drug class.  If option c) is not specified a default table is used. The output of the

program is a set of performance metrics that include sensitivity and specificity. A conda

installable version of the software was deposited in the Bioconda19 database.  The Github site for

the software is https://github.com/ewissel/hAMRoaster.

hAMRoaster requires, as input, a formatted results table of runs by AMR detection tools.

This table is identical to that produced by the hAMRonization18 software. hAMRonization is

conda installable and can compile the output of many AMR tools into a unified format.

shortBRED20 and fARGene21 are not included in hAMRonization at the time of analysis, so

hAMRoaster can take the path to the raw output for these tools and partially match it to the

hAMRonization output.

hAMRoaster requires an input to the “known” phenotypic resistance in the mock

community (--AMR_key flag of hAMRoaster), such as a result of susceptibility testing tables

that are available from NCBI Biosamples. Antibiotics in the table of known phenotypic

resistances are matched to their respective drug classes. Results classified as “susceptible” in

susceptibility testing are considered “susceptible”, and “intermediate” results are ignored. In

cases where susceptibility testing occurred with two or more agents, each agent is considered

independently (e.g. resistance to “amoxicillin-tetracycline” is treated as resistance to
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“amoxicillin” and “tetracycline” independently). Each identified AMR gene is labeled with its

corresponding drug class for comparison. In instances where a gene confers resistance to

multiple drug classes, the detected gene is split into multiple rows so that each conferred

resistance can be independently compared to the susceptibility testing. Gene to drug class linkage

is verified using the CARD database22 when applicable by accession ID. Any genes

corresponding to ‘unknown’ or ‘other’ drug classes (including hypothetical resistance genes) are

excluded from further analysis. Genes that confer resistance to an antibiotic that is only

administered and effective in combination with another drug (e.g. clavulanic acid in

amoxicillin-clavulanic acid) are classified as ‘Other’ and excluded from analysis.

A detected AMR gene is labeled as a true positive by hAMRoaster if the drug class

matched to an AMR gene corresponds to a drug class that tests “resistant” in the susceptibility

testing for the mock community. Similarly, a false positive is coded as a drug class that is called

by the software, but tested as susceptible in the mock community (--AMR key parameter).

Observed AMR genes are labeled “unknown” if the corresponding drug class is not tested in the

mock community and is not included in the AMR key file. Once true/false positives and

true/false negatives are determined per tool, hAMRoaster calculates sensitivity, specificity,

precision, accuracy, and percent unknown.

Creation of multiple synthetic mock communities of antibiotic resistance bacteria

Simple synthetic community with high resistance

Bacterial members of the base mock community were chosen from NCBI’s BioSample

Database23 and met the following criteria: (1) the strain had extensive antibiotic susceptibility

testing data using CLSI or EUCAST testing standards as part of the public NCBI BioSample

record; (2) the strain was isolated from human tissue; (3) the strain was the cause of a clinical
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infection; (4) the FASTA was available to download from NCBI BioSample Database.23 Eight

bacteria, each representing a different species, with overlapping resistance to 43 antibiotics

across 18 drug classes, were selected for the mock community (Table 1). The included taxa were

Acinetobacter baumannii MRSN489669, Citrobacter freundii MRSN12115, Enterobacter

cloacae 174, Escherichia coli 222, Klebsiella pneumoniae CCUG 70742, Pseudomonas

aeruginosa CCUG 70744, Neisseria gonorrhoeae SW0011, and Staphylococcus aureus LAC

(Table 1).

Paired-end FASTQs were simulated by NCBI’s ART 24 using default parameters for

HiSeq 2500 at three levels of average sequence coverage (5x, 50x, and 100x sequenced bases /

genome length) and are available on FigShare

(https://figshare.com/account/home#/projects/125974 ). Simulated FASTQs were subsequently

concatenated to resemble shotgun metagenomics reads, and metaSPAdes25 was used to create

assembled contigs. The FASTQs were simulated with approximately equal numbers of reads of

each genome.

Complex synthetic clinical mock community with low resistance

We created a community profile with previously simulated human metagenomes 26 and

added a single AMR isolate collected from a human infection at 1x coverage to simulate a

human metagenome with restrictive phenotypic resistance. We included samples 0 through 5

from CAMISIM,26 a set of previously simulated human metagenomes, and combined these with

simulated fastqs from one of two isolates from human infections, SRR1778982527 for even

sample numbers and  SRR1668367528 for odd sample numbers.
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Running antibiotic prediction software on mock communities

All tools for AMR prediction were run on the mock community and restrictive samples at

all coverage levels using default settings for either simulated FASTQ or assembled contigs.

Default settings were used as it is what most users use and understand to be the developer

recommendations. When both options were available, assembled contigs were run.

Statistical Analysis

Data were analyzed in Python v3.7.7 and plotted in R v4.0.4. hAMRoaster calculated all

performance metrics reported in Table 3. Unweighted Cohen’s kappa was calculated using R

package IRR29 for each pairwise combination of tools to test agreement between tools.

Data Availability

All data and code is available on the hAMRoaster GitHub repository

(https://github.com/ewissel/hAMRoaster ) and figshare (for large files;

https://figshare.com/account/home#/projects/125974 )

Results

Selection of nine open source, conda-installable tools for detection of antibiotic resistance

phenotypes

To identify tools for antibiotic resistance prediction, we used a multi-headed search

strategy. We searched PubMed using terms “AMR”, “antibiotic resistance genes”,

“bioinformatics”, and “antimicrobial resistance”. We also searched GitHub using the same set of

terms. Once an initial list of tools was compiled, we performed a second PubMed literature

review including the search terms from above plus the names of the tools (“tool 1” OR “tool 2”).

We also used Twitter to ask the research community what bioinformatic tools they use to identify
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AMR ( supplementary text 1). These searches identified 16 potential tools to identify AMR

genes (Table 2). The search for tools concluded on March 1, 2021.

For an identified tool to be considered eligible for comparison, it had to meet the

following criteria: (1) be conda or Docker installable; (2) have source code publicly available in

a data repository and be actively maintained (defined as tool updates or GitHub responses within

the last year); (3) have an open source license; and (4) take FASTQs or FASTAs as input files.

Nine tools met the criteria to be included in this analysis: ABRIcate 30, fARGene 31 ResFinder 32,

shortBRED20, RGI 33, AMRFinderPlus 34, starAMR 35 , sraX 36, and deepARG 37. PointFinder also

qualified38, but was a subtool of ResFinder and only identified mutational resistance for some

organisms, so it was excluded from analysis. The code used to install and run all tools is

available on the hAMRoaster GitHub.

ABRIcate

ABRIcate v.1.0.1 took contig FASTA files as inputs and compared reads against NCBI

AMRFinder Plus34 by default, though there are options to compare against CARD,33 ResFinder,32

ARG-ANNOT,39 MEGARES,40 EcOH,41 PlasmidFinder,42 VFDB,43 and Ecoli_VF,44 which are

also pre-downloaded. ABRIcate reported on acquired AMR genes and not mutational resistance.

shortBRED

shortBRED20 v0.9.3 used a set of marker genes to search metagenomic data for protein

families of interest. The bioBakery45 team published an AMR gene marker database built from

849 AR protein families derived from the ARDB 46 v1.1 and independent curation alongside

shortBRED, which is used in this study.
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fARGene

fARGene21,31 v.0.1 used Hidden Markov Models to detect AMR genes from short

metagenomic data or long read data. This was a different approach from most other tools which

compare the reads directly. fARGene has three pre-built models for detecting resistance to

quinolone, tetracycline, and beta lactamases, which were tested in this study. fARGene can

predict unknown ARGs using its gene models.

RGI

RGI33 v5.1.1 used protein homology and SNP models to predict ‘resistomes’. It used

CARD’s protein homolog models as a database. RGI predicts open reading frames (ORFs) using

Prodigal,47 detects homologs with BLAST,48 and matches to CARD’s database and model cut off

values.

ResFinder

ResFinder32 v4.0 was available both as a web-based application or the command line. We

used ResFinder 4 in this study, which was specifically designed for detecting genotypic

resistance in phenotypically resistant samples. ResFinder aligned reads directly to its own

curated database without need for assembly.

deepARG

deepARG37 v.2.0 used a supervised deep learning based approach for antibiotic resistance

gene annotation of metagenomic sequences. It combines three databases—CARD, ARDB, and

UNIPROT—and categorizes them into resistance categories.
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sraX

sraX36 v.1.5 was built as a one step tool; in a single command, sraX downloaded a

database and aligned contigs to this database with DIAMOND49. By default, sraX used CARD,

though other options can be specified. As we use default settings for all tools, only CARD was

used in this study for sraX. It should be noted that the one step aspect is convenient, but can

become lengthy if there are multiple runs and databases need to be downloaded multiple times.

starAMR

starAMR35,50 v.0.7.2 used BLAST+51 to compare contigs against a combined database

with data from ResFinder, PointFinder, and PlasmidFinder.

AMR Finder Plus

AMR Finder Plus34 v.3.9.3 used BLASTX48 translated searches and hierarchical tree of

gene families to detect AMR genes. The database was derived from the Pathogen Detection

Reference Gene Catalog52 and was compiled as part of the National Database of Antibiotic

Resistant Organisms (NDARO).

Performance of  software on synthetic metagenomes with high- and -low-prevalence of

AMR phenotypes

Each software tool was run against a synthetic mock community of 8 bacteria at three

coverage levels that expressed 43 antibiotic resistance phenotypes. Overall, the number of AMR

genes detected across all tools ranged from 13 to over 700 at 100x coverage (Table 3). For some

tools, genes detected did not correspond to a tested phenotype in the mock community, so the

prediction fell into the “unknown” category. Among the tools tested, AMR Finder Plus had the
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highest degree of unclassifiable/unknown results (observed AMR gene not tested in the mock

community; Figure 3). An overview of these results are available in Figure 2A.

After filtering out the AMR genes detected in the simulated human metagenomes (for

which AMR phenotypes were unknown), detected AMR genes were examined per sample. None

of the tools detected true or false positives for one of the AMR isolates in the low resistance

samples (Figure 2b). Fewer genes were detected overall compared to the highly resistant sample,

as expected for samples with a limited resistance phenotype (Table 3), though many of these

corresponded to unknown AMR phenotypes and not those included in susceptibility testing.

Sensitivity and Specificity

Sensitivity tests what portion of AMR genes are correctly identified by a tool when

phenotypic resistance to the drug class that gene confers resistance to is present in the mock

community. Specificity tests what portion of known negatives (i.e. susceptible drugs from

phenotypic testing) do not have AMR genes detected for that drug class. Sensitivity for

phenotype detection ranged from >0.99 (RGI) to 0.23 (sraX) at the lowest coverage levels for the

highly resistant, antibiotic resistance gene (ARG)-rich dataset sample (Fig. 2a). In general,

genome coverage did not greatly affect sensitivity, with the exception of sraX, which increased

to 0.53 at the highest level. fARGene and deepARG had a high sensitivity value (>0.90) at all

coverage levels. RGI, deepARG, and fARGene are all tools that compare reads to a model of

AMR instead of aligning reads directly to a database, indicating that this method may be

appropriate when high sensitivity values are preferred.  As a note, in this ARG-rich dataset, there

were only 2 possible true negatives because only two drug classes were always susceptible to

antibiotics in those two drug classes when tested (nitrofuran and polypeptide).
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In samples with lower numbers of resistance genes, sensitivity and specificity were

variable within- and across-tools for samples, with sensitivity much lower than the high

resistance community ((0 - <0.45; Fig. 1b) Specificity was much higher overall, though variable

across samples depending on whether any true positives were detected by the tools (Table 3).

Precision was highly variable across tools with no consistent trend across tools (range 0 - 1),

while accuracy was less variable, with most tools having an accuracy between .50 and 0.75

Concordance between tools

An analysis of the agreement between tools of detected resistance to drug classes

revealed that overall, agreement was highly variable across tools (0.02 - 0.72 at 5x coverage, Fig.

5A) between tools at all coverage levels for the ARG-rich dataset (Figure 5A, 5B, 5C). Low

agreement was found between most tools in the low AMR samples with the exception of AMR

Finder Plus, abricate, and ResFinder4, which had a kappa value > 0.80 (Figure 5D).

Discussion

Development of a framework for assessing AMR prediction software performance using

synthetic data

There is a considerable research effort to develop new software for predicting AMR using

DNA sequence alone. In this dynamic environment, there is a need for researchers and

epidemiologists to understand the relative performance of open source software tools . While

some tools currently exist for compiling the results of several AMR tools together (hAMRonizer

and chARMedDb53), this study was motivated by the lack of an open-source pipeline for

comparing the results once compiled.

The central challenge in developing this software was to compare detected AMR genes to

resistance phenotypes. Detected AMR genes needed to be classified by their corresponding drug
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class(es) so they could be matched to the known phenotypically resistant drug classes. One

hurdle in this translation is that tools use different databases, and some databases classify genes

differently. For example, shortBRED classifies gene families, while CARD classifies specific

genes. While this analysis checked the drug classification via the DNA/Protein Accession value

in CARD, only around 300 of the >1,000 genes detected could directly map to genes in CARD

by accession value. The hAMRonization tool overcomes this challenge by providing a drug class

column and filling in the values from ChEBI ontology54 when possible. The hAMRoaster

strategy is to assign a CARD drug class value to every detected AMR gene first by accession

number, then by gene name. If neither of  these methods assign a drug class for an AMR gene,

then the drug class provided by hAMRonization is used. Another challenge in converting

detected AMR genes to drug classes is that some drugs are only administered in combination,

such as clavulanic acid with amoxicillin. For these instances, resistance to the drug only used in

combination (e.g. clavulanic acid) is treated as an “other” drug class and excluded from analysis

in hAMRoaster. In these cases, we incorporated the experience of practicing clinicians to identify

combination antibiotics into the hAMRoaster antibiotic key.

The analysis presented here used synthetic data to compare tool performance. Synthetic

data has the benefit of allowing controlled input with known ground truth. Therefore users can

focus on the types of organisms and phenotypes they need to to detect in their own datasets,

perform experiments with real samples, and manipulate a range of factors such as relative

abundance and sequencing error. The NCBI BioSample repository (used in this study) is an

invaluable resource for creating such datasets as it contains many samples with AMR phenotypes

determined by international standards. Researchers could also sequence and phenotype

culturable organisms in their own laboratories to provide testing standards to evaluate software.
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Here, we exclusively examined synthetic short read Illumina data, but this analysis strategy

could be adapted to understand the effect of using data generated on long read technologies such

as the Pacific Bioscience and Oxford Nanopore platforms.

Overall trends in  performance and reasons for variability between tools

We found  the sensitivity of almost all tools to be very good in a highly resistant sample

(>0.80), with the exception of sraX, which had a proportionally high number of false negatives

compared to true positives. However, sensitivity was lower in low-resistance samples (0 - <0.45),

indicating that tool selection plays an important role in results for targeted AMR studies. All

tools except shortBRED and starAMR detected a large number of genes that were not associated

with a lab-determined phenotype in our highly resistant mock community, while this was true for

all tools except starAMR in the low-resistance sample. In practice, researchers and

epidemiologists may be only interested in a narrow range of AMR phenotypes. Overall, these

results indicate when researchers are interested in resistance to a particular drug class as opposed

to resistance to a broad range of drug classes, tool selection becomes very important.

We calculated Cohen’s kappa to capture the agreement at the drug class level between

AMR tools to see if all AMR tools detected resistance to the same drug classes across samples.

We found that agreement at the drug class level was surprisingly low across all tools in the high

and low resistance data, though some pairs of tools have higher agreement than others (e.g.,

AMR Finder Plus, abricate, and ResFinder4 in the low resistance samples; Figure 5), indicating

that some tools may be better suited for detecting different types of resistance. As such,

hAMRoaster provided a table with the number of genes detected per drug class for each tool that

may help researchers in selecting an AMR gene detection tool that is best suited for their

research question.
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This research underlines the need for the further development of software tools for the

detection of AMR genes in the human microbiome. It is increasingly recognized that the

confined location and genetic diversity of this microbial population provides ideal conditions for

genetic exchange among residential microbes and between residential and transient microbes,

including pathogenic microbes. Notably, rates of horizontal gene transfer among bacteria in the

human microbiome (especially the gastrointestinal tract) are estimated to be many times higher

than among bacteria in other diverse ecosystems, such as soil.55 Refined tools appropriate for

use in shotgun metagenomic data will be important for tracking the spread of AMR genes from

diverse environmental sources to the human microbiome and across sites in the human body and

understanding whether AMR genes are derived from vertical inheritance or via horizontal gene

transfer.

In conclusion, this study compared bioinformatics tools for detecting AMR genes in a

simulated short read metagenomic sample at three coverage levels at one time point. While tools

use slightly different methods and databases, these tools overall had high sensitivity for detection

of AMR genes. Moreover, agreement between tools was sometimes low, indicating the

importance of careful tool selection. We advocate that researchers should test these software

tools using pipelines such as hAMRoaster with a synthetic community that highlights the

resistance profiles and sample of interest.
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Figure 1:Schematic l Methods
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Figure 2: Antimicrobial Resistance (AMR) Genes Detected By Software Tools by  Drug

Class

AMR Genes detected by each tool across coverage levels, grouped into drug class to which the

genes  confer resistance with the color coding indicating whether the detection was true positive

(green), false positive (purple) or unknown (yellow). Clear spaces in the plot indicate that AMR

genes were not detected for the drug class on the x-axis by the tool on the y-axis. Plot A contains

the high AMR Data, while plot B contains the low AMR data.
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Figure 3: Sensitivity of Software Tools for Detection of Antimicrobial Resistance (AMR)

Genes Across Coverage Levels

Sensitivity was calculated as (true positives) / (true positives + false negatives). Most tools were

highly sensitive (greater than 0.80). All genes corresponding to “Other” or “Unknown” drug

classes were  not included in these calculations. Similarly, AMR genes corresponding to

phenotypic resistance that was  not tested in the mock community was considered “Unknown”

and not included in the sensitivity analysis.
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Figure 4: Percent Detection of Unknown Antimicrobial (AMR) Resistance Genes Across

Coverage

The percent detection of AMR genes that could not be classified because the drug class

the gene confers resistance to was not tested for the high AMR (A) and low AMR (b) data. A

black dashed line is placed at 20%, indicating where at least 20% of the detected AMR genes

could not be classified.

remix, or adapt this material for any purpose without crediting the original authors. 
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted January 30, 2023. ; https://doi.org/10.1101/2022.01.13.476279doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.476279


HAMROASTER
31

Figure 5: Agreement (Cohen’s  Kappa) values between tools across coverage levels

calculated in R using the kappa2 function

Agreement between tools in detecting resistance to drug classes is shaded across all plots

while kappa values are bolded when the p-value is less than 0.05. A, B, and C display the

agreement between tools for the 5x, 50x, and 100x coverage high AMR datasets, respectively.  D

displays the agreement between tools for the low AMR samples.
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Table 1A: Clinical isolates included in the high resistance simulated community. (susceptibility

test is in the spreadsheet, will have to be supplemental bc so big)

Strain

Testing Standard

(CLSI or EUCAST) BioSample ID Link

Neisseria gonorrhoeae

SW0011 CLSI SAMN15960549

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN15960549

Klebsiella pneumoniae

CCUG 70742 EUCAST SAMN07602587

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN07602587

Pseudomonas

aeruginosa CCUG

70744 EUCAST SAMN07602569

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN07602569 /

Acinetobacter

baumannii

MRSN489669 CLSI SAMN12087686

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN12087686

Enterobacter cloacae

174 CLSI SAMN04456586

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN04456586

Citrobacter freundii

MRSN12115 CLSI SAMN13412315

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN13412315
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Staphylococcus aureus

LAC CLSI SAMN08391108

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN08391108

Escherichia coli 222 CLSI SAMN05194390

https://www.nc

bi.nlm.nih.gov/biosam

ple/SAMN05194390

Table 1B: Clinical isolates included in the low resistance simulated community. (susceptibility

test is in the spreadsheet, will have to be supplemental bc so big)

Strain

Testing Standard

(CLSI or EUCAST) BioSample ID Link

Staphylococcus aureus EUCAST SAMN25295985

https://www.ncbi.nlm.

nih.gov/biosample/252

95985

Neisseria gonorrhoeae CLSI SAMN22824038

https://www.ncbi.nlm.

nih.gov/biosample/228

24038
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Table 2: Tools identified from search methods with the selection criteria and whether they

subsequently worked or not.

Tool

Conda /

Docker

Installable?

Actively

Maintaine

d?

Input

format?

Included in

Analysis?

Implement

ation

Method Database

ABRIcate Yes - conda Yes FASTA Yes

Align reads

to specified

database

NCBI (default),

AMRFinder Plus,

CARD, ResFinder,

ARG-ANNOT,

MEGARES, EcOH,

PlasmidFinder,

VFDB, and

Ecoli_VF

shortBRED

Yes -

docker &

conda Yes FASTA Yes

Align reads

to database

AMR gene marker

database from 849

AR protein families

from the ARDB19

and independent

curation
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fARGene Yes - conda Yes FASTQ Yes

Compare to

AMR

model

Hidden markov

models for

quinolone,

tetracycline, and

beta lactamases

RGI

Yes -docker

(conda

outdated) Yes FASTQ Yes

Compare to

AMR

model

Prodigal predicts

ORF and compared

to CARD and

WildCARD

ResFinder 4

Yes -

docker

(conda

broken) Yes FASTA Yes

Align reads

to database

ResFinder 4

database

DeepARG

Yes -

docker Unclear FASTA Yes

Compare to

AMR

model

Supervised deep

learning compares

reads to antibiotic

resistance categories

created from CARD,

ARDB, and

UNIPROT

sraX

Yes -

docker & Yes FASTA Yes

Align reads

to database CARD by default
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conda

starAMR Yes - conda Yes FASTA Yes

Align reads

to database

ResFinder,

PointFinder, and

PlasmidFinder

AMR

Finder Plus Yes - conda Yes FASTA Yes

Align reads

to database

Pathogen Detection

Reference Gene

Database

ResPipe No Yes

FASTQ

or BAM No

PointFinder Yes - docker Yes FASTA No

PCM:

Pairwise

Comparativ

e Modelling No Yes

FASTA

- protein No

SRST2 No No FASTQ No

Arg_Ranke

r Yes - conda Yes

Require

s special

metadata

input No

MetaCherc

hant Yes - conda No

FASTA

- No

remix, or adapt this material for any purpose without crediting the original authors. 
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted January 30, 2023. ; https://doi.org/10.1101/2022.01.13.476279doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.476279


HAMROASTER
37

genomic

ARIBA Yes - docker No

Paired

end

FASTQ No

ARG-ANN

OT No No Unclear No

kmerresista

nce No No - No

c-sstar No No

Unkno

wn

No - could

not track

down

github

Table 3A: Summary Statistics for the high resistance data from hAMRoaster: These are the

counts and metrics as calculated by the hAMRoaster pipeline. Formulas for all metrics are as

follows:

Specificity = TN / (TN + FP)

Sensitivity = TP / (TP + FN)

Precision = TP / (TP + FP)

Accuracy = (TP + TN) / (TP + FP + TN + FN)

Proportion Unknown = unknown / (TP + FP + unknowns)
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High Resistance Data, 100x Coverage

tool
False
positive

True
positive unknown

False
negative

True
negative

sensitivit
y

specificit
y precision accuracy

Proportion

Unknown

abricate 0 66 22 9 2 0.8800 1.0000 1.0000 0.8831 0.2500
amrfinder
plus 2 62 71 9 1 0.8732 0.3333 0.9688 0.8514 0.5259
deeparg 0 98 23 8 2 0.9245 1.0000 1.0000 0.9259 0.1901
fARGene 0 713 0 13 2 0.9821 1.0000 1.0000 0.9821 0.0000
resfinder 4 1 43 15 9 1 0.8269 0.5000 0.9773 0.8148 0.2542
rgi 4 559 255 6 1 0.9894 0.2000 0.9929 0.9825 0.3117

shortbred 0 29 0 11 2 0.7250 1.0000 1.0000 0.7381 0.0000

srax 0 10 3 11 2 0.4762 1.0000 1.0000 0.5217 0.2308

staramr 1 52 11 9 1 0.8525 0.5000 0.9811 0.8413 0.1719

High Resistance Data, 50x Coverage

tool

False

positive

True

positive unknown

False

negative

True

negative

sensitivit

y

specificit

y precision accuracy

Proportion

Unknown
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abricate 0 66 21 9 2 0.8800 1.0000 1.0000 0.8831 0.2414

amrfinder

plus 2 62 67 9 1 0.8732 0.3333 0.9688 0.8514 0.5115

deeparg 0 99 23 8 2 0.9252 1.0000 1.0000 0.9266 0.1885

fARGene 0 702 0 13 2 0.9818 1.0000 1.0000 0.9819 0.0000

resfinder

4 1 43 15 9 1 0.8269 0.5000 0.9773 0.8148 0.2542

rgi 4 557 254 6 1 0.9893 0.2000 0.9929 0.9824 0.3117

shortbred 0 30 0 11 2 0.7317 1.0000 1.0000 0.7442 0.0000

srax 0 13 3 10 2 0.5652 1.0000 1.0000 0.6000 0.1875

staramr 1 52 11 9 1 0.8525 0.5000 0.9811 0.8413 0.1719

High Resistance Data, 5x Coverage

tool

False

positive

True

positive unknown

False

negative

True

negative

sensitivit

y

specificit

y precision accuracy

Proportion

Unknown
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abricate 0 9 39 19 2 0.8125 1.0000 1.0000 0.8200 0.3276

amrfinder

plus 1 9 60 58 1 0.8696 0.5000 0.9836 0.8592 0.4874

deeparg 0 8 267 86 2 0.9709 1.0000 1.0000 0.9711 0.2436

fARGene 0 13 470 0 2 0.9731 1.0000 1.0000 0.9732 0.0000

resfinder 4 0 9 43 10 2 0.8269 1.0000 1.0000 0.8333 0.1887

rgi 12 6 1015 418 1 0.9941 0.0769 0.9883 0.9826 0.2893

shortbred 0 11 29 0 2 0.7250 1.0000 1.0000 0.7381 0.0000

srax 0 12 4 3 2 0.2500 1.0000 1.0000 0.3333 0.4286

staramr 0 9 44 11 2 0.8302 1.0000 1.0000 0.8364 0.2000
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Table 3B: Summary Statistics for the low resistance data from hAMRoaster: These are the counts and metrics as calculated by the

hAMRoaster pipeline.

input_file_na

me

AMR

Isolate toool

True

Positiv

e

False

Positiv

e

Unknow

n

True

Negativ

e

False

Negativ

e

Sensiti

vity

Specifi

city

Precis

ion

Accur

acy

Proporti

on

Unknow

n

samp0_srr1778

9825

SRR177898

25

amrfinderpl

us 0 0 4 5 4 1.0000 0.0000

0.000

0

0.555

6 1.0000

samp0_srr1778

9825

SRR177898

26 deeparg 0 0 7 5 4 1.0000 0.0000

0.000

0

0.555

6 1.0000

samp0_srr1778

9825

SRR177898

27 resfinder 4 0 0 1 5 4 1.0000 0.0000

0.000

0

0.555

6 1.0000

samp0_srr1778

9825

SRR177898

28 rgi 0 0 22 5 4 1.0000 0.0000

0.000

0

0.555

6 1.0000
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samp0_srr1778

9825

SRR177898

29 shortbred 0 0 8 5 4 1.0000 0.0000

0.000

0

0.555

6 1.0000

samp0_srr1778

9825

SRR177898

30 srax 0 0 6 5 4 1.0000 0.0000

0.000

0

0.555

6 1.0000

samp1_srr1668

3675

SRR166836

75

amrfinderpl

us 1 0 2 4 4 1.0000 0.2000

1.000

0

0.555

6 0.6667

samp1_srr1668

3675

SRR166836

76 deeparg 3 1 2 4 4 0.8000 0.4286

0.750

0

0.583

3 0.3333

samp1_srr1668

3675

SRR166836

77 resfinder 4 1 0 2 4 4 1.0000 0.2000

1.000

0

0.555

6 0.6667

samp1_srr1668

3675

SRR166836

78 rgi 1 6 7 4 4 0.4000 0.2000

0.142

9

0.333

3 0.5000

samp1_srr1668

3675

SRR166836

79 shortbred 0 0 4 4 4 1.0000 0.0000

0.000

0

0.500

0 1.0000
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samp1_srr1668

3675

SRR166836

80 srax 0 1 5 4 4 0.8000 0.0000

0.000

0

0.444

4 0.8333

samp1_srr1668

3675

SRR166836

81 staramr 2 0 0 4 4 1.0000 0.3333

1.000

0

0.600

0 0.0000

samp2_srr1778

9825

SRR177898

30

amrfinderpl

us 0 0 4 12 4 1.0000 0.0000

0.000

0

0.750

0 1.0000

samp2_srr1778

9825

SRR177898

31 deeparg 0 0 6 12 4 1.0000 0.0000

0.000

0

0.750

0 1.0000

samp2_srr1778

9825

SRR177898

32 resfinder 4 0 0 1 12 4 1.0000 0.0000

0.000

0

0.750

0 1.0000

samp2_srr1778

9825

SRR177898

33 rgi 0 0 22 12 4 1.0000 0.0000

0.000

0

0.750

0 1.0000

samp2_srr1778

9825

SRR177898

34 shortbred 0 0 4 12 4 1.0000 0.0000

0.000

0

0.750

0 1.0000
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samp2_srr1778

9825

SRR177898

35 srax 0 0 3 12 4 1.0000 0.0000

0.000

0

0.750

0 1.0000

samp3_srr1668

3675

SRR166836

75

amrfinderpl

us 1 0 2 4 4 1.0000 0.2000

1.000

0

0.555

6 0.6667

samp3_srr1668

3675

SRR166836

76 deeparg 3 0 3 4 4 1.0000 0.4286

1.000

0

0.636

4 0.5000

samp3_srr1668

3675

SRR166836

77 resfinder 4 1 0 2 4 4 1.0000 0.2000

1.000

0

0.555

6 0.6667

samp3_srr1668

3675

SRR166836

78 rgi 1 0 13 4 4 1.0000 0.2000

1.000

0

0.555

6 0.9286

samp3_srr1668

3675

SRR166836

79 shortbred 2 0 9 4 4 1.0000 0.3333

1.000

0

0.600

0 0.8182

samp3_srr1668

3675

SRR166836

80 srax 0 0 5 4 4 1.0000 0.0000

0.000

0

0.500

0 1.0000
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samp3_srr1668

3675

SRR166836

81 staramr 2 0 0 4 4 1.0000 0.3333

1.000

0

0.600

0 0.0000

samp4_srr1778

9825

SRR177898

30

amrfinderpl

us 0 0 4 12 4 1.0000 0.0000

0.000

0

0.750

0 1.0000

samp4_srr1778

9825

SRR177898

31 deeparg 0 0 6 12 4 1.0000 0.0000

0.000

0

0.750

0 1.0000

samp4_srr1778

9825

SRR177898

32 resfinder 4 0 0 1 12 4 1.0000 0.0000

0.000

0

0.750

0 1.0000

samp4_srr1778

9825

SRR177898

33 rgi 0 0 22 12 4 1.0000 0.0000

0.000

0

0.750

0 1.0000

samp4_srr1778

9825

SRR177898

34 shortbred 0 0 7 12 4 1.0000 0.0000

0.000

0

0.750

0 1.0000

samp4_srr1778

9825

SRR177898

35 srax 0 0 6 12 4 1.0000 0.0000

0.000

0

0.750

0 1.0000
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samp5_srr1668

3675

SRR166836

75

amrfinderpl

us 1 0 2 4 4 1.0000 0.2000

1.000

0

0.555

6 0.6667

samp5_srr1668

3675

SRR166836

76 deeparg 3 1 2 4 4 0.8000 0.4286

0.750

0

0.583

3 0.3333

samp5_srr1668

3675

SRR166836

77 resfinder 4 1 0 2 4 4 1.0000 0.2000

1.000

0

0.555

6 0.6667

samp5_srr1668

3675

SRR166836

78 rgi 1 6 7 4 4 0.4000 0.2000

0.142

9

0.333

3 0.5000

samp5_srr1668

3675

SRR166836

79 shortbred 0 1 5 4 4 0.8000 0.0000

0.000

0

0.444

4 0.8333

samp5_srr1668

3675

SRR166836

80 srax 1 1 3 4 4 0.8000 0.2000

0.500

0

0.500

0 0.6000

samp5_srr1668

3675

SRR166836

81 staramr 2 0 0 4 4 1.0000 0.3333

1.000

0

0.600

0 0.0000
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Supplementary text 1: URL link to tweet

https://twitter.com/emily_wissel/status/1336013892116488195
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Supplementary table 1: tidy table of data

https://docs.google.com/spreadsheets/d/1bfACqEh0nkS65vCUj5DfMg4PvW0fHxbtrv0P

gKt1gT4/edit#gid=53644837
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