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ABSTRACT
Background. The delta-toxin (δ-toxin) of Staphylococcus aureus is the only hemolysin
shown to cause mast cell degranulation and is linked to atopic dermatitis, a chronic
inflammatory skin disease. We sought to characterize variation in δ-toxin production
across S. aureus strains and identify genetic loci potentially associated with differences
between strains.
Methods. A set of 124 S. aureus strains was genome-sequenced and δ-toxin levels in
stationary phase supernatants determined by high performance liquid chromatography
(HPLC). SNPs and kmers were associated with differences in toxin production using
four genome-wide association study (GWAS) methods. Transposon mutations in
candidate genes were tested for their δ-toxin levels. We constructed XGBoost models to
predict toxin production based on genetic loci discovered to be potentially associated
with the phenotype.
Results. The S. aureus strain set encompassed 40 sequence types (STs) in 23 clonal
complexes (CCs). δ-toxin production ranged from barely detectable levels to >90,000
units, with a median of >8,000 units. CC30 had significantly lower levels of toxin
production than average while CC45 and CC121 were higher. MSSA (methicillin
sensitive) strains had higher δ-toxin production than MRSA (methicillin resistant)
strains. Through multiple GWAS approaches, 45 genes were found to be potentially
associated with toxicity.Machine learningmodels using loci discovered throughGWAS
as features were able to predict δ-toxin production (as a high/low binary phenotype)
with a precision of .875 and specificity of .990 but recall of .333. We discovered that
mutants in the carA gene, encoding the small chain of carbamoyl phosphate synthase,
completely abolished toxin production and toxicity in Caenorhabditis elegans.
Conclusions. The amount of stationary phase production of the toxin is a strain-
specific phenotype likely affected by a complex interaction of number of genes with
different levels of effect. We discovered new candidate genes that potentially play a role
inmodulating production.We report for the first time that the product of the carA gene
is necessary for δ-toxin production in USA300. This work lays a foundation for future
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work on understanding toxin regulation in S. aureus and prediction of phenotypes from
genomic sequences.

Subjects Genomics, Microbiology
Keywords Staphylococcus aureus, Delta-toxin, Bacterial GWAS, Genome-based predictor

INTRODUCTION
Staphylococcus aureus is a common causative agent of nosocomial and community-
acquired infections, encoding a wide variety of factors that damage the host and evade
immunity. Central to its ability to cause disease is its large repertoire of toxins. S.
aureus can produce at least 13 extracellular toxins (Grumann, Nübel & Bröker, 2014; Otto,
2014; Laabei et al., 2015), including phenol-soluble modulins (PSMs) (Peschel & Otto,
2013), alpha-toxin (Bhakdi & Tranum-Jensen, 1991), Panton-Valentine Leukocidin (PVL)
(Genestier et al., 2005), and δ-toxin (Wang et al., 2007).

Toxin expression levels are subject to evolutionary trade-offs between survival and
transmission in different environments (Laabei et al., 2015; Young et al., 2017). Toxins
contribute to important biological functions: In S. aureus, alpha-toxin is important for
initial cell-to-cell contacts in biofilm formation, beta-toxin contributes to biofilm structure
and growth via crosslinking, and PSMs are involved in detachment of cells for dispersal
(Rudkin et al., 2017). In addition, expression of toxins is essential to skin and soft tissue
infections and other common diseases caused by the bacterium (Xu &McCormick, 2012;
Otto, 2013; Peschel & Otto, 2013; Kitur et al., 2015). However, during chronic S. aureus
infections, toxin production is a contra-indication of disease as reduced toxicity mutants
may have situationally increased fitness (Cheung et al., 2014; Soong et al., 2015; Rose et al.,
2015; Laabei et al., 2015). Dysfunction in the Agr quorum sensing system (Novick, 2003),
central to upregulation of many toxins, has been linked to longer durations of bacteremia
(Fowler Jr et al., 2004; Sakoulas et al., 2005). Similarly, mutational inactivation of another
regulator, Rsp, which promotes S. aureus infection and virulence (Li et al., 2015), allows
for prolonged survival in chronic infections (Das et al., 2016).

In this study, we focus on the genetics of strain-specific differences of δ-toxin expression.
δ-toxin is an amphipathic peptide in the PSM family. It can form pores on the surface
of host cells, eliciting a pro-inflammatory response or cytolysis at high concentrations
(Bernheimer & Rudy, 1986; Kasimir et al., 1990; Otto, 2014). δ-toxin is the product of the
hld gene, which is part of the Agr quorum sensing system. The Agr operon consists of two
divergently transcribed operons P2 and P3. The P2 operon encodes the four genes necessary
for quorum sensing and activates the P3 operon, which transcribes the main effector of the
Agr system, a 514-nucleotide regulatory molecule RNAIII. RNAIII also contains the hld
gene encoding the 26 amino acid δ-toxin peptide, which has been found only in S. aureus
and S. epidermidis (McKevitt et al., 1990). In a community-associated MRSA (CA-MRSA)
bacteremia mouse model, PSM α and δ-toxin were shown to be important for disease
severity, indicating their importance as virulence factors (Wang et al., 2007; Peschel &
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Otto, 2013). However, δ-toxin is the only PSM shown to induce mast cell degranulation
(Nakamura et al., 2013) and increase the severity of S. aureus mediated Atopic Dermatitis
(AD), a chronic inflammatory skin disease, affecting 15–30% of children and 5% of adults
in the US and industrialized countries (Williams & Flohr, 2006; Pustišek, VurnekŽivković &
Šitum, 2016). Despite its importance, we know little of the natural variation in production
of the δ-toxin molecule between S. aureus strains and the genetic factors that influence this
trait. Therefore, we queried the range of δ-toxin production in a diverse set of S. aureus
strains and attempted to determine if there are genetic loci strongly associated with δ-toxin
production by using bacterial genome-wide association study (GWAS) methods. We
then analyzed the performance of identified genome variants and metadata for predicting
δ-toxin production.

MATERIALS & METHODS
Strains and growth conditions
Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) and Nebraska
Transposon Mutant Library (NTML) strains were acquired from BEI resources
(https://www.beiresources.org/) (Table S1). For δ-toxin assays, bacteria were grown
on tryptic soy agar (TSA) plates overnight (18–24 hours) at 37 ◦C. TSA plates used for
NTML strains had the addition of erythromycin (5 µg/ml). Cultures from a single colony
were inoculated and grown overnight in tryptic soy broth (TSB) at 37 ◦C, a 45◦ angle, and
200 rpm. Final cultures were standardized to a starting cell density of 5 × 105 CFU/ml of
TSB and grown for 15 hours at 37 ◦C, a 45◦ angle, and 275 rpm (Quave & Horswill, 2018).

Whole-genome shotgun sequencing
DNA extraction and paired-end library prepwere performed asmanufacturer’s instructions
(Wizard Genomic DNA Purification Kit, Promega; Nextera XT DNA Library Prep Kit,
Illumina). Genome sequencing was performed using both Illumina HiSeq and MiSeq.
Raw read data were deposited in the NCBI Short Read Archive under project accession
number PRJNA289526. 102/124 strains had more than 40x average genome coverage, and
the minimum coverage of any strain was 33x.

Genome assembly and annotation
Genomeswere processed using the Staphopia pipeline (Petit & Read, 2018). BBduk (v37.66)
(Bushnell, 2016) was used to eliminate Illumina adapters, trim low quality ends (base
quality <20), and filter out low quality reads (mean read PHRED quality <20). Read
error correction and de novo genome assembly was performed using SPAdes (v3.11.11)
(Bankevich et al., 2012). Genome assemblies were annotated with Prokka (Seemann,
2014) (v1.12) using its default database. SNP-sites was used to call single nucleotide
polymorphisms (SNPs) in the core genome alignment with S. aureusN315 as the reference
strain (Page et al., 2016). Agr typewas determined using BLAST to query genome assemblies
for the agrD nucleotide sequences of defined agr types: I (AB492152.1), II (AF001782),
III (AF001783), and IV (AF288215). For all but four samples, 100% coverage and >95%
identity were used to identify Agr type. NRS168, NRS182 NRS235, and NRS260 Agr types
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were determined based on available metadata. Untyped strains (NA) returned no BLAST
results likely due to contig boundaries falling in this region. MLST (multilocus sequencing
type) was determined using the SRST2 tool (Inouye et al., 2014) with the PubMLSTdatabase
(Jolley, Bray & Maiden, 2018).

Phylogenetic tree estimation
A core genome alignment of 999,473 base-pairs (bp) from the 124 NARSA strains was
obtained from Roary (Page et al., 2015; Tange, 2011) (v3.11.2). Gubbins was used to
remove potential recombination regions and to obtain a downsized core genome alignment
of 42,406 bp containing only polymorphic sites (Croucher et al., 2015). A final maximum
likelihood (ML) tree was obtained with RAxML (v8.2.10) with 100 bootstraps and a
GTRGAMMA model (Stamatakis, 2014).

Toxin identification using HPLC
High performance liquid chromatography (HPLC) methods were employed to detect and
quantify the levels of δ-toxin present in supernatants of 124 NARSA strains following
established procedures (Quave & Horswill, 2018). Briefly, a 1.5 ml S. aureus culture grown
for 15 hours as described above was centrifuged and the supernatant transferred to an
HPLC vial and frozen at −20 ◦C until ready for HPLC testing. HPLC was performed
with the following parameters: 500 µl injection, flow rate of 2 mL/min, and UV/Vis
monitored at 214 nm using solvents (a) 0.1% (vol/vol) trifluoracetic acid in water and (b)
0.1% trifluoracetic acid in acetonitrile. Peaks at retention time ∼7.2 min and ∼7.5 min
corresponding to deformylated and formylated δ-toxin respectively, were quantified by
taking the sum of the total peak area. Peak areas were normalized using OD600 readings
of the cultures. Prior studies using this HPLC method confirmed peak identity at these
retention by LC-MS (Somerville et al., 2003; Quave, Plano & Bennett, 2011). Analyses were
performed on three replicate supernatants per strain.

For subsequent analyses treating toxin production as a continuous variable, we used a
Box-Cox power transformation to achieve a more symmetric distribution and thus satisfy
the normality assumption of phylogenetic regression and other comparative models. For
analyses treating toxin production as a binary Low/High, we used a cutoff of 20,000, which
clusters strains on the left-side of the distribution and split the data into 109 low and 15
high toxin producers.

Hemolysis assay
TSA with 5% rabbit’s blood was used to test transposon strains for reduced hemolysis as
rabbit blood is more susceptible to δ-toxin. TSA II with 5% sheep’s blood agar was used to
test the hemolysis profile of complemented strains. Strains were spotted and incubated at
37 ◦C for 24 hours before incubation at 4 ◦C for an additional 24 hours. Photos of the plates
were taken with the use of a lightbox to illuminate hemolysis zones. Images were imported
into software ImageJ (Schneider, Rasband & Eliceiri, 2012) to increase the contrast of the
image and for measurement of hemolysis zones by taking the hemolysis measurement and
subtracting colony size.
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GWAS
All GWAS analyses were done with 106 S. aureus strains. NRS168, NRS252-NRS256,
NRS259, NRS260, NRS262, NRS264-NRS266, NRS271, NRS272, NRS275, NRS383,
NRS386, NRS387, and NRS408 were later phenotyped and included in all other analyses.

SEER (Lees et al., 2016) (v 1.1.4) was run according to https://github.com/johnlees/
seer/wiki/Tutorial. In brief, kmers used for SEER were counted using fsm-lite
(https://github.com/nvalimak/fsm-lite) using genome assemblies in fasta format as input.
Population structure was estimated using Mash (Ondov et al., 2016) to sketch assemblies
and output pairwise distances between all samples. SEER scripts were used to create a
distance matrix. Six dimensions was chosen based on scree plot output (Fig. S1). SEER
was run using a binary phenotype with p value filtering off. QQ plots were made in R to
ensure that population structure was properly accounted for. A minor allele frequency
(MAF) of .20 was chosen as regression analysis with kmers of lower MAF tend to fail or
have high standard errors. Significant kmers were kmers with likelihood ratio test p-values
lower and equal to the Bonferroni correction of .05/n, where n is the number of kmers
tested. Significant kmers were mapped to reference genome N315 (NC_002745.2) using
BLAST (Camacho et al., 2009) optimized for short queries. Bedtools (v2.27.1) (Quinlan &
Hall, 2010) was then used to annotate the matches.

For treeWAS (Collins & Didelot, 2017), a binary core SNPs matrix was generated from
snp-sites output. To account for the right skewed distribution of δ-toxin production,
the values were transformed into ranks. treeWAS was run with 3 unrooted trees (NARSA
strains alone, NARSA strains plus ST93, NARSA strains plus S. argenteus) generated from
RAxML (v8.2.10) to limit false positives generated from an incorrect phylogeny, and the
intersection of all loci identified was considered significant.

For bugwas (Earle et al., 2016), we used a modified version of GEMMA 0.93 (Zhou &
Stephens, 2012) with a centered relatedness matrix (GEMMA option -gk 1) created using
BIMBAM files and a binary toxin phenotype file and set Minor Allele Frequency of 0.
Biallelic core SNPs were used to create a mean genotype file, and SNP positions were noted
in a SNP annotation file with the chromosome number set to 24 to indicate one allele. A
nucleotide matrix of core SNPs, a binary phenotype file, and an unrooted phylogenetic
tree created by RAxML (v8.2.10) were used to run the bugwas R package. A Bonferroni
correction of .05/n was used, where n was the sum of phylogenetic patterns represented by
the bi and tri allelic SNPs.

DBGWAS (Jaillard et al., 2018) (v0.5.0) was run using genome assemblies in fasta
format, a binary phenotype, unrooted phylogenetic tree created by RAxML (v8.2.10), and
DBGWAS resistance and UniProt databases for annotation. A false discovery rate (FDR)
of 5% was used to determine significant kmers.

Phylogenetic regression
We fit three phylogenetic comparative models: (1) a phylogenetic regression to study
the association between δ-toxin production and several covariates, (2) a Pagel’s lambda
model to estimate the phylogenetic signal of δ-toxin production, and (3) an ancestral
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state reconstruction of δ-toxin production along the branches of the Staphylococcus aureus
phylogeny.

For the phylogenetic regression model, we included δ-toxin level as a continuous
response for 106 strains and 11 predictors: clonal complex (CC), methicillin-resistant
S. aureus (MRSA), Agr type (agr), and variants associated with δ-toxin production in
S. aureus identified using SEER (Lees et al., 2016) and bugwas (Earle et al., 2016) and
DBGWAS (Jaillard et al., 2018) (Table S3). isdC andWP_000894032.1 were excluded from
the analysis due to large standard errors while sequence type (ST) was excluded due to
similarity toCC. Bugwas variants were represented in the analysis as 6 phylogenetic patterns.
We used the julia package PhyloNetworks (Solís-Lemus, Bastide & Ané, 2017; Bastide et al.,
2018) to fit the phylogenetic regression, to estimate the phylogenetic signal in δ-toxin
through Pagel’s λ transformation, and to reconstruct the ancestral states. To tease apart
which if any of these factors truly impact δ-toxin production, we performed a phylogenetic
regression. First, with Pagel’s lambda model, we estimated a strong phylogenetic signal
(λ = .504035) for the δ-toxin production using a rooted (by S. argenteus) phylogenetic
tree calibrated to be consistent with time. This estimate did not entirely fit under the
Brownian Model (BM) assumption, which requires λ ≈ 1. Regardless of this, we assumed
a BM for the evolution of δ-toxin production in the phylogenetic regression model. The
rationale for the use of BM was its simplicity as well as the shown robustness to model
misspecification (Bastide et al., 2018).

Extreme Gradient Boosted Tree Classifier
The R package xgboost (Chen & Guestrin, 2016) was used to create predictive classifiers
with strain metadata and genetic features from the GWAS. The predictor was trained using
stratified 10-fold cross-validation wherein 90% is used for training and 10% is used for
validation. Model performance metrics such Area Under Receiver Operating Characteric
(AUROC) and Cohen’s Kappa were calculated using R packages pROC and irr respectively.

Other statistical analysis
Association of MRSA/MSSA status, Agr type, and CC to toxin production was performed
with Kruskall-Wallis and pairwise Mann-Whitney U tests using continuous δ-toxin as
the dependent variable. A Bonferroni correction was applied to test p-values to account
for multiple tests. Pagel’s lambda and Blomberg’s K (Pagel, 1999; Blomberg, Garland Jr
& Ives, 2003) were estimated using R package phytools using an unrooted phylogenetic
tree obtained from RAxML and no calibration to the branch lengths. All analyses were
performed using the R (R Core Team, 2016) and Julia programming language (Bezanson et
al., 2017) for statistical computing.

Phenotypic analysis of toxin phenotypes of transposon mutant strains
Nine transposon mutants in genes potentially associated with δ-toxin production were
selected from the USA300 Nebraska transposon library (Fey et al., 2013). In addition, we
selected an agrA mutant as a positive control for δ-toxin disruption and one randomly
chosen mutant with no known association from the GWAS experiments as a negative
control. The gene disrupted was a phi77 ORF109-like protein, SAUSA300_1928,
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WP_000582165.1. All transposon mutants were transduced into an isogenic USA300
JE2 background and confirmed by PCR (Table S2). HPLC assays and hemolysis assays for
δ-toxin were as previously described. Complementation was performed by cloning PCR
fragments containing the USA300 genes into the pOS1-Plgt vector using splicing overlap
extension PCR (Bubeck Wardenburg, Patel & Schneewind, 2007). In brief, the plasmid and
genes were PCR amplified to contain complementary overhangs. The purified products
were then mixed and subject to another round of PCR with no primers. This reaction
was used to transform IM08B E. coli (Monk et al., 2015). The plasmid was purified and
electroporated into the mutant strains as previously described (Monk et al., 2012). A pOS1-
Plgt only plasmid was used as a control for complementation experiments. The C. elegans
virulence assays were performed using C. elegans strain N2. Nematode population
synchronization was performed as in Penley & Morran (2018). Populations were bleached
in 20% household bleach and M9 buffer and plated on OP50 until L4 larval stage (48
hours at 20 ◦C). Worms were subsequently washed off, counted, and∼200 were plated on
control OP50 plates and S. aureus lawns on BHI agar. S. aureus plates were prepared 24
hours prior by adding 200 ul of an overnight culture and growing at 24 ◦C. At 24 hours
and 48 hours, plates were scored by counting live worms. Worm counts on OP50 plates
were used to normalize mortality calculations and to account for plating efficiency.

RESULTS
δ-toxin production level is highly variable between S. aureus strains
and is associated with MSSA/MRSA and Clonal Complex
We used high performance liquid chromatography (HPLC) to quantify stationary phase
δ-toxin production in 124 publically available S. aureus strains from the Network on
Antimicrobial Resistance in Staphylococcus aureus (NARSA) collection, which represents
diverse taxonomic groups within the species (Table S1). The strains, which were shotgun
sequenced using Illumina technology, were a diverse representation of the S. aureus species,
consisting of 40 sequence types (STs) in 23 clonal complexes (CCs). There was considerable
variation in the total δ-toxin production (sum of the formylated and deformylated δ-toxin
peptides) between strains (Fig. 1, Fig. S2). The distributionmost closely fits a gammamodel
with a strong left skew. Production ranged from zero to 97,235 units, with a median value
of 8,295. The majority of strains produced less than 10,000 units; 118 of the 124 strains
(95%) produced less than 30,000.

When toxin production was mapped onto the strain phylogeny, it was apparent that
there was variation in the average level between clonal complexes even though there was
also a large variation in the phenotype within CCs (Fig. 2). Two tests for phylogenetic signal
of the trait, Blomberg’s K and Pagel’s lambda (Pagel, 1999; Blomberg, Garland Jr & Ives,
2003), returned statistically robust scores (K = .019, p= .016/ λ = .99, p= 1.55e−48; for
bothmeasures, a value of 1 indicates trait similaritymeasured by variance (K) or correlation
(λ) as expected under Brownian evolution). A Pagel’s lambda value of∼1 indicates a strong
phylogenetic signal, while the low Blomberg’s K indicates that the variance that exists within
δ-toxin production is primarily on the tips of the trees within clades and does not wholly fit
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Figure 1 Characterization of δ-toxin production in 124 S. aureus strains. Supernatants from 124 S. au-
reus strains from the Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) repository
were subjected to high performance liquid chromatography (HPLC). The amount of δ-toxin present in
samples is proportional to the area under the peak generated by UV absorbance when passing through the
HPLC detector. Production ranged from 0 to 97,234 mAU2.

Full-size DOI: 10.7717/peerj.8717/fig-1

a Brownian model of evolution for δ-toxin. When variation between clades was analyzed
pair-wise using Kruskal-Wallis and Mann-Whitney tests, CC30 (Average δ-toxin 4299)
was found to have significantly lower δ-toxin production than CC45 (Average δ-toxin
30955, p= .027) and CC121 (Average δ-toxin 17693, p= .00042, Fig. 3C). Ancestral
reconstruction of the δ-toxin phenotype (Fig. S3) suggested that high δ-toxin producing
clades such as CC45, CC890 and CC72 had arisen independently in the S. aureus species
from a low producing ancestor.

Agr groups have been suggested to be associated with differences in S. aureus cytotoxicity
(Jarraud et al., 2002; Collins, Buckling & Massey, 2008). All four Agr groups were present in
our samples (I: 50, II: 22, III: 38, IV: 11, NA: 3). We found significant differences in toxin
production between Agr I and III (p= .022) using Kruskal-Wallis test and between Agr III
and IV (p= .00049) using pairwise Mann-Whitney U tests. Agr I and IV have higher mean
levels than Agr II and III (Fig. 3B). Methicillin resistance has also been previously indicated
to interfere with the Agr quorum sensing system and thus toxin production (Rudkin et
al., 2012). Within our set of strains, MRSA strains were found to have lower δ-toxin than
MSSA strains by Mann-Whitney U (p= 0.024, Fig. 3A). Some caution must be used when
assigning causality as clonal complex, Agr group andMRSA status are strongly confounded,
but we also found that MRSA status and Agr type III were significant negative predictors
of δ-toxin level in a phylogenetic regression (see Methods).
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Figure 2 δ-toxin production across the S. aureus phylogeny. A total of 124 S. aureus strains in 23 clonal
complexes (CC) were used to create a core genome phylogeny using RAxML. Clonal complexes are repre-
sented in the inner ring and color coded. Red bars represent δ-toxin values from HPLC. Missing bars indi-
cate δ-toxin was undetectable by HPLC.

Full-size DOI: 10.7717/peerj.8717/fig-2

Diverse genetic loci are associated with variation in individual strain
δ-toxin production levels
To ascertain individual genomic variants that may potentially be associated with the
differences in toxin production, we used four recently published programs for bacterial
GWAS (genome-wide association studies). The programs differ in the population structure
correction, the types variants tested and whether continuous or binary phenotypes could be
tested. SEER (Lees et al., 2016) is an alignment-free method that uses kmers as features to
create a distance matrix and a fixed effects model to correct for population structure. SEER
therefore allows discovery of both core and accessory gene variants associated with the
phenotype. For the purposes of GWAS, we defined the binary toxin phenotype at a cutoff
of 20,000 units (Fig. 1), which gave a set of 87 strains in the ‘‘low’’ toxin and 19 in the high
toxin category. This threshold was chosen to separate the very high-producing strains from
the main mass (Fig. 1). Using the binary phenotype, SEER identified three genes having
more than ten kmers with statistically significant association (Table S3). Polymorphisms in
isdC, glpD, and a gene encoding YbbR-like domain-containing protein (WP000894032.1)
were found to be negatively associated with δ-toxin production. Bugwas (Earle et al.,
2016) is an alternative distance-based GWAS program that uses principal components as
random effects for population structure control. Bugwas analysis, performed with a binary
phenotype, produced six phylogenetic patterns of SNPs (Table S3). DBGWAS (Jaillard
et al., 2018) is a kmer based alignment-free method which relies on De Brujin graphs to
interpret genomic variation but uses bugwas for downstream analyses. Running DBGWAS
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Figure 3 Associations of δ-toxin production to methicillin resistance, Agr type and clonal complex.
(A) Differences in δ-toxin production between MSSA and MRSA strains. (B) Differences in δ-toxin pro-
duction between agr types. (C) Differences in δ-toxin production between CCs. *p< .05, **p< .01, ***<
.001.

Full-size DOI: 10.7717/peerj.8717/fig-3

with a binary phenotype yielded one hit in an intergenic region near staphopain A (Table
S3). treeWAS (Collins & Didelot, 2017) differed from the other three programs in using
the strain phylogeny to model changes associated with phenotype changes at the tip and
within the structure of the tree. Using a phylogenetic tree can be more accurate than
distance estimation if the tree is correct, therefore for robustness we used three separate
trees (NARSA strains only, NARSA strains with a ST93 outgroup, NARSA strains with an S.
argenteus outgroup) and pooled common loci. Using a ranked phenotype, genes common
to all three analyses were fadD, vraD, degA, gdpP, ggt, sufB, opcR, rebM, thiD, and three
uncharacterized proteins (Table S3).

When the results from the four approaches were aggregated (Table S3), we noted the
majority of the genetic loci were in genes encoding enzymes that were part of conserved
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Table 1 XGBoost models were trained with and without metadata (ST, CC, Agr group, andMSSA/MRSA status). Ten-fold cross-validation was
used to assess model performance. For all measures, the average performance across cross-validation is reported. For non-binary classification, in-
dividual precision and recall measures are weighted according to its proportion in the overall dataset during averaging, and Cohen’s Kappa is cal-
culated using squared weights. Specificity is not measured for non-binary classification models as it is included in the weighted precision and recall
measures.

Model Precision Recall Specificity AUROC (95%CI) Cohen’s Kappa (p-value)

Binary predictor+/−metadata .875 .333 .990 .697 (.553, .840) .429 (.000000037)
Four category predictor+metadata .423 (weighted) .443 (weighted) N/A .664 (.597, .731) .255 (.00441) (weighted)
Four category predictor−metadata .451 (weighted) .326 (weighted) N/A .667 (.576, .758) .133 (.131) (weighted)

metabolic pathways. Forty-two variants were synonymous mutations, and only nine were
non-synonymous (6 loci from the bugwas analysis and 3 from treeWAS). None of the four
GWAS approaches found any significant genetic loci in common.

We attempted to determine if machine learning approaches could predict δ-toxin
from genome sequences by integrating information from the diverse GWAS analyses with
MRSA/MSSA, Agr group and genotype (CC or ST). We chose Extreme Gradient Boosting
(XGBoost) (Friedman, 2001; Chen & Guestrin, 2016) which uses decision tree ensembles
to predict from the given set of features. XGBoost has been used to successfully predict
biologically relevant phenotypes such as antibiotic resistance in Enterobactericiae and
Salmonella (Nguyen et al., 2018; Nguyen et al., 2019) as well as RNA-protein interactions
(Jain, Gupte & Aduri, 2018), protein-protein interactions (Wang, Liu & Deng, 2018;
Sanchez-Garcia et al., 2019), and RNAmethylation (Qiang et al., 2018). An XGBoost model
was trained with stratified 10-fold cross-validation.When using a binary δ-toxin phenotype
(>20000), themodel had a precision of .875 and a recall of .333. Specificity was .990, and the
Area Under Receiver Operating Characteristic (AUROC) was .697 (Table 1). Interestingly,
excludingMRSA/MSSA status, Agr group and ST/CC had no effect on model performance,
suggesting that rare genomic variants are the main driving force of very high δ-toxin
production. Recall was poor, suggesting there are yet unfound genomic determinants that
contribute strongly to the phenotype. Splitting the toxin levels into 4 categories (0–1000,
1001–7000, 7001–30000, >30000) decreased performance (With metadata: .423 weighted
precision, .443 weighted recall, .664 AUROC; Without metadata: .451 weighted precision,
.326 weighted recall, .667 AUROC). However, most of the errors in the 4-category model
(∼75%) occurred in adjacent categories, suggesting that the classifier was better than
random choice with near-misses. ST was the top parameter in prediction, resulting in a loss
of ∼21% accuracy when omitted. This suggested that the driving force behind differential
δ-toxin level in S. aureus is interactions between a potentially large number of genes with
the potential to affect toxin expression levels.

The small chain of carbamoyl phosphate synthase, encoded by carA,
is necessary for δ-toxin production in USA300
We screened the δ-toxin production phenotype of transposon mutants of 9 of the 42
genes putatively identified by GWAS (Table S3) as well as agrA as a positive control and
a randomly chosen gene as negative control (SAUSA300_1928). We used mutants from
the USA300 Nebraska Transposon Mutant Library (Fey et al., 2013) that were transduced
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back into the parental USA300 JE2 strains and validated by PCR (Table S2). Of the eleven
mutants tested, transposons in hemL, carA, glpD, isdC, thiD, and agrA significantly reduced
δ-toxin production (Fig. 4), but only carA, agrA, and isdC mutants showed significantly
different hemolysis on rabbit blood agar by Mann Whitney U. δ-toxin production in
strains containing transposons in fadD, sbnC, brnQ, hlgB, and phi77 ORF109-like protein
was not different to the parental strain USA300 JE2. agrA is necessary to activate RNAIII
and hld transcription (Janzon, Löfdahl & Arvidson, 1989; Gagnaire et al., 2012), so the
transposon knock-out was expected to completely abrogate expression. However, the
complete shutdown of toxin expression in the carA mutant had not been previously
reported. We showed that δ-toxin accumulation by the carAmutant could be rescued by a
cloned version of the gene on an expression plasmid (71% δ-toxin production restoration
compared to USA300 JE2) but not an empty vector (0% δ-toxin production restoration).
carA encodes the carbamoyl-phosphate synthase small chain protein, which is involved
in L-arginine biosynthesis and UMP biosynthesis (part of pyrimidine metabolism) and
has been shown to potentially regulate nitric oxide resistance (Grosser et al., 2018) and be
important for the regulation of PSMα1 expression (Hardy et al., 2019). We confirmed the
results of Bae et al. (2004) that a carAmutant was defective in killing Caenorhabditis elegans
and showed this phenotype could be restored by complementation. While hemolysis of
the complementation strain on sheep blood agar was less than the original strain (Table 2,
Figs. 5A–5E), virulence in C. elegans was similar. Additionally, complementation with a
carA allele from a CC45 high δ-toxin strain that restored hemolysis to comparable levels
but not δ-toxin production showed reduced killing of C. elegans (Fig. 5F). This result
suggests that δ-toxin may play an important role in virulence in this model organism.

DISCUSSION
This study revealed the complex relationship between strain phylogeny and δ-toxin
accumulation at stationary phase in S. aureus. The phenotype had a strikingly left-skewed
distribution, with a minority of strains having >5-fold the median value in toxin units
(Fig. 1). Pathoadaptation probably plays amajor role in generating this diversity:δ-toxin has
been shown to be an important virulence factor in skin and soft tissue infection (Berlon et
al., 2015), but in bacteremia agr-regulated toxinsmay be under negative selection (Fowler Jr
et al., 2004; Sakoulas et al., 2005). Toxin expression levels may also change through neutral
genetic variation or selection on other metabolic pathways, especially if the levels of the
toxin are ultimately determined by the interaction ofmultiple complex regulatory pathways
(Priest et al., 2012). We showed there was a strong relationship between phylogeny and
δ-toxin expression (Fig. 3C). Ancestral reconstruction of δ-toxin levels (Fig. S3) suggested
higher expression has evolved several times independently but in a minority of clades,
indicative of the fitness trade-offs that can exist with increased virulence. Strains also vary
considerably within CCs, suggesting within-clade mutations affect the level of expression.
An example of this is the NRS22 strain in CC45, which had a more 4-fold less production
than the average for the CC (NRS22 = 6,686; CC45 average = 30,955) (Fig. 2). The
association of higher or lower levels with particular CCs is likely due to epistatic interaction
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Figure 4 Impact of gene knockouts on δ-toxin production. A subset of genes that were found to be
significantly associated with δ-toxin by GWAS were tested for their effect of δ-toxin production. δ-toxin
from transposon mutants from the Nebraska Transposon Mutant Library (NTML) was measured via
HPLC. *p< .05.

Full-size DOI: 10.7717/peerj.8717/fig-4

Table 2 Characterization of hemolysis activity of USA300, carAmutant, and complemented strains.
S. aureus strains were spotted on 5% sheeps blood TSA II and incubated at 37 ◦C for 24 hours followed by
24 hours at 4 ◦C. Plates were photographed using a lightbox and processed in ImageJ. Hemolysis rings and
colonies (n= 10) for each strain were measured using ImageJ.

Strain Average
Hemolysis (mm)

Standard
deviation (mm)

USA300 9.0945 .508
carA-tn 5.6450 .360
carA-tn+ pOS1 5.0459 .446
carA-tn+ pOS1-carA 7.3305 .536
carA-tn+ pOS1-dtox null carA 7.0114 .422

between rare mutations and variants shared between clade members. As the strains in this
study originate from a wide range of infections (Table S1), it was not possible to associate
δ-toxin production in S. aureus with a particular disease (such as atopic dermatitis).

We usedmultiple bacterial GWAS approaches to produce a list of candidate loci thatmay
be affectingδ-toxin production at different phylogenetic levels. GWAS looks for homoplasic
genetic variants produced by recombination or parallel evolution that can be associatedwith
phenotypic variation (Read & Massey, 2014; Power, Parkhill & De Oliveira, 2016). Methods
vary by the types of variant tested (SNPs, kmers, indels), whether continuous or discrete
phenotypes are used and methods for controlling non-independence of samples due to
shared ancestry and typically widespread linkage disequilibrium. Two main approaches
have been implemented to determine the underlying population structure of tested bacteria.
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Figure 5 Impact of carA on hemolysis and virulence of S. aureus in C. elegans. (A–E) S. aureus strains
were spotted on 5% sheep’s blood TSA II and incubated at 37 ◦C for 24 hours followed by 24 hours at
4 ◦C. Representative colonies are being shown. (F) L4 C. elegans were fed either USA300 S. aureus (pur-
ple), a carA transposon mutant USA300 (red), a carA transposon mutant with vector (yellow), a carA
transposon mutant complemented with the native USA300 carA allele (green), or a carA transposon mu-
tant complemented with a carA allele that produces no δ-toxin (blue). Survival was scored at 24 and 48
hours. Survival counts are normalized against C. elegans fed on OP50 E. coli.

Full-size DOI: 10.7717/peerj.8717/fig-5

The most common is a form of principal components correction whereby the genomes
of strains are used to create a matrix of linearly uncorrelated variables which can then
be included in as either fixed or random effects in a regression model (e.g DBWAS,
bugwas, SEER). The second approach uses a phylogenetic tree as input to determine
genetic relatedness between strains and can be fed into a regression model as with principal
components or used to simulate null data to determine a cut-off for true associations (e.g
treeWAS). Although all the variants listed in Table S3 passed the family-wise correction
cutoff by their respective programs, many are likely false positives due to the presence of
linkage disequilibrium or from underestimation of the underlying population structure,
especially since the majority were synonymous substitutions. SEER and treeWAS appeared
to be finding SNPs that were common in the S. aureus population (in∼1,500–20,000 of the
∼44,000 strains in the Staphopia database (Petit & Read, 2018)). In contrast, bugwas found
SNPs strongly associated with CC45 (the most toxic CC), while DBGWAS found a variant
associated with low toxin production that excludes all high toxin strains in CC45. Of note,
mecA kmers were not discovered by GWAS methods, although phylogenetic regression
pointed to MSSA strains having higher toxicity. Similarly, we didn’t find any variants
within agr genes associated with differences in the phenotype, possibly because they were
too rare in our population. Although, it is possible to use GWAS to find novel SNPs with
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large effect sizes using a relatively small number of genomes within one CC (Laabei et al.,
2014), the conclusion to be drawn from this pilot study is that larger numbers of S. aureus
genomes will be needed to understand the δ-toxin phenotype across multiple CCs.

Two other GWAS studies have focused on toxicity in S. aureus. Laabei et al were able to
build a random forest predictor using 31 SNPs and 21 indels to predict low, medium, and
high toxicity in MRSA with an accuracy of >85% (Laabei et al., 2014). Recker et al. (2017)
clarified the role of toxicity by determining factors associated with bacteremia-associated
mortality. Five genes, including two in the agr operon, were selected by random forest
to be predictive of mortality in CC22 and CC30 S. aureus bacteremia. None of the genes
putatively associated with variation in toxin production from these two studies overlap
ours, although our work differed in having a focus specifically on δ-toxin. Genes from
our list that have been implicated in other work are hemL1, which is part of the agrA
transcriptional pathway (Das et al., 2016; Young et al., 2017) and brnQ. Other genes found
to have reduced rabbit blood hemolysis that did not overlap our set were hemB, qoxA-C
and hlgA. Our GWAS results suggested variants in qoxD, hemC and hlgB affected in delta
toxin production, but these have not been shown to have any toxin-related phenotype in
any study we have seen. Mutations in clpX and walK, which were found in our GWAS
results, have also been shown to affect hemolysis (Frees et al., 2003; Delauné et al., 2012;
Jacquet et al., 2019).

We validated nine candidate genes for the effect that transposon mutations had on
δ-toxin production. Some candidate genes essential for cellular survival (e.g., clpX and
walK ) cannot be tested using knockout mutants. Transposons in 5 genes (two predicted
by bugwas, two by SEER and one using treeWAS) had no effect on production, indicating
they were likely false positive calls. The finding that hemL, glpD, isdC, and thiD knockouts
resulted in a small but significant reduction δ-toxin levels suggests that they may have a
significant functional role. The USA300 carA knockout had the most dramatic phenotype
as the gene was found to be indispensable for δ-toxin production, a result not previously
reported. A non-δ-toxin producing carA mutant was found to have reduced virulence in
C. elegans, suggesting a role for δ-toxin in infection. Further mechanistic studies are now
needed to understand why carA is necessary. Strikingly, the variant discovered through the
GWAS screen, and all mutations in the gene in high production CCs such as CC45 were
synonymous. There is a growing body of literature documenting differences in protein
function caused by synonymousmutations that impact RNA toxicity (Mittal et al., 2018) or
protein folding (Walsh, Bowman & Clark, 2019). Given the involvement of the Agr system,
there is possibly a role for mutations to change RNAIII binding specificity and influence
gene regulation.

This work (and other GWAS studies) suggest that strain-to-strain variation in δ-toxin
production is governed by complex genetic interactions. The high number of significant but
probably low effect variants discovered in this analysis highlights the complex regulation
of the δ-toxin phenotype and may parallel models proposed for the genetic basis of some
traits in eukaryotes (Boyle, Li & Pritchard, 2017). Nevertheless, we showed that we can
train a classifier (XGBoost) using only genome features with prediction accuracies of
87.9% (binary categories) and 43.5% (4 categories). We found that the most important
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predictive feature was ST in the non-binarymodel, which reflects howmuch of the variation
in δ-toxin production between strains is dependent on phylogeny. The ability to predict
phenotypes of toxicity based on sequence data is likely to become an important diagnostic
tool as medicine increasingly adopts genome-based technologies (Laabei et al., 2014).
Going forward, we can improve genome-based predictors and gain mechanistic insights
that may lead to development of anti-toxin drugs through a combination of efforts to
expand collection of phenotypic variation in natural strains and molecular genetic studies
targeted at high-effect loci.

CONCLUSIONS
δ-toxin production in S. aureus is a strain-specific phenotype likely affected by a complex
network of genes. GWAS and machine learning approaches have proved successful in
determining genetic determinants underlying this phenotype and using them for genome-
based prediction. While most genes discovered by GWASmodify δ-toxin production, carA
was found to be essential. Differences in carA function may contribute to virulence by
modulating δ-toxin production. Further studies are needed to understand toxin regulation
in S. aureus and to predict phenotypes from genomic sequences.
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